
Draft in Springeronline.com

An FPGA-based accelerator for Fourier Descriptors
computing for color object recognition using SVM

Fethi SMACH1,2, Johel MITERAN1, Mohamed ATRI3, Julien DUBOIS1,
Mohamed ABID2 and Jean-Paul GAUTHIER1

1 Le2i Faculté Mirande Aile H. Université de Bourgogne BP 47870 21078 Dijon
2 Laboratoire CES, ENIS, Sfax, Tunisie.
3Laboratoire EµE de Monastir, Tunisie

1 {fethi.smach}@u-bourgogne.fr

Abstract. Fourier Descriptors can be used as feature vector components in various
applications, such as real-time color object recognition or image retrieval. The full process is
composed of the feature extraction followed by a classification step performed using Support
Vector Machine (SVM). In order to accelerate the computation of Fourier Descriptors, a
hardware implementation using FPGA technology is presented in this paper. We evaluated
classification performance with respect to lighting variations and noise sensibility. Several
experiments were carried out on three databases. Then an efficient architecture for FD
computation on FPGAs is proposed and designed as accelerator. The WildCard is used to
prototype this implementation. This design can have an operation speed up of approximately 10
compared to the standard software PC implementation.

Keywords: Fourier Descriptors, color object recognition, Field Programmable Gate
Array (FPGA), SVM.

1. Introduction

Feature extraction and object recognition are subjects of extensive research in the
field of image processing. Color object recognition is widely used in the machine
vision industry in real time applications. A central issue is the recognition of objects
independently of their position. To do this, the real-time extraction of invariant
descriptors with respect to similarity transformations, while taking the local texture
into account, remains a crucial challenge: it often consumes most important of the
computation time of the recognition process. We therefore focused on the acceleration
of feature computation in this paper. In other works, authors have dealt with the
classification implementation issue [1] [2] [3].
The recognition process is divided into two parts: the training (the off-line phase) and
decision steps (the on-line phase) (Fig 1). The result of the training step is the model
determined by the SVM based method [4]. During the decision step, the object is

Draft in Springeronline.com

mailto:%7Bfethi.smach%7D@u-bourgogne.fr

Draft in Springeronline.com

classified using a feature vector, the classifier and the model which was previously
computed.

 Training (off line)

Sensor

Feature
Extraction

Training

Model

Decision (on line)

Sensor

Feature
Extraction

Classification

class

 Fig. 1. Recognition steps

Fourier Descriptors are used as feature vector components in various applications,
such as object classification, and image retrieval [5] [6]. Gauthier et al [7] proposed a
family of invariants in translation, rotation, and scale. H. Fonga [8] extended the
Fourier Descriptors, defining Similarity Descriptors and applying them to gray level
images. We extended the notion of Fourier Descriptor invariants to color images
classification in [9]. As mentioned above, our aim here is to accelerate the
computation of Fourier Descriptors with hardware implementation. We propose in
this paper efficient hardware architecture for FD implementation on Field
Programmable Gate Arrays (FPGAs). FPGAs were originally developed for hardware
circuit designs. They may be used as powerful computing systems for image
processing algorithms [10] [11] [12] [6]. These computations can be performed much
faster than on the host PC, mainly because of the high parallelism allowed by the
internal structure of the component. Thus, the FPGA devices on which such
applications are built offer a good medium for implementing complex computational
tasks characterized by high throughput and low latency requirements, providing
orders of magnitude speedup in application processing at a fraction of the cost per
processing operation. On the other hand, pre-designed Intellectual Property (IP) cores
for FPGA represent a huge intellectual and financial wealth that must be leveraged by
any high-level tool targeting reconfigurable platforms. These IP cores come in the
form of synthesizable HDL code or even lower level descriptions. They vary

Draft in Springeronline.com

2

Draft in Springeronline.com

drastically with respect to their control and timing protocol specifications, which are
intended to be interfaced to HDL-based designs. Several projects have focused on bus
wrapping that connects IP cores with microprocessors. In [13], Mukherjee describe a
system level approach for interfacing IP blocks generated by the behavioral synthesis
tool itself. In [14], Guo proposed an automation of IP core interface generation for
reconfigurable computing. The main contributions of this paper are: the application of
Fourier Descriptors to color object recognition and the development of a hardware
accelerator for feature invariant computing. The work reported in this paper can be
combined with the previous work by Miteran and al. who proposed in [15] a hardware
implementation of an approximation of the SVM decision function.

This paper is organized as follows: Section 2 is a review of Fourier Descriptors and
SVM based classifiers. Section 3 describes the evaluation of classification
performances using software implementation. In section 4 we propose our hardware
architecture. Section 5 concludes the paper.

2 Review of Fourier Descriptors and SVM classifier

There exists an extensive literature which addresses both the theoretical and applied
aspects of invariant descriptors. It is important that such invariants fulfill certain
criteria such as low computational complexity and completeness. A complete
invariant implies that two objects have the same shape if and only if their invariant
descriptors are the same. The invariant property is relative only to a certain
transformation. A feature vector of a Fourier Descriptor invariant with respect to
similarity transformations (rotation, translation and scale) is used as an input in a
Support Vector Machine (SVM) based classifier. This section will first give a brief
definition and outline the elementary properties of Fourier Descriptor invariants. This
is then followed by a brief description of a SVM classifier.

2.1 Definition of Fourier Descriptors

Fourier Descriptors (FD) are defined as follows. Let f be a square summable

function on the plane, and its Fourier transform:
^

f

(
2

^

() = ()exp |)f x j xf ξ −∫ dxξ (1.1)

Where . | . is the scalar product in . 2

If are polar coordinates of the point ξ , we shall again denote the

Fourier transform of

(,)λ θ
^

(,)f λ θ

f at the point(, . Gauthier defined the mapping)λ θ fD from
into by + +

Draft in Springeronline.com

3

Draft in Springeronline.com

()
2 2^

0

 = (,)fD f
π

λ λ θ∫ dθ (1.2)

fD is the Fourier Descriptor of the image f , i.e. the feature vector which describes

each image and will be used as an input in the supervised classification method.

2.2 Properties of Fourier Descriptors

Fourier descriptors, calculated according to the equation (1.2), have several
elementary properties which are crucial for invariant object recognition [7]:
Fourier descriptors are motion and reflexion-invariant:

 If M is a “Motion” and f and are images such
as , where

g
()() ()g x f M x= ()()f M x is a composed

function: f applied to . Thus, images and ()M x g f have the same
descriptorsD :

2() (),g fD Dλ λ λ= ∀ ∈ (1.3)
 If there exists a reflexion ℜ such that , ()() ()g x f x= ℜ

2() (),g fD Dλ λ λ= ∀ ∈ (1.4)

Motion descriptors are scaling-invariant:

 if k is a real constant such as , () ()g x f kx=

2
4
1() (),g fD D

kk
λλ = ∀ ∈λ (1.5)

The Fourier transform will be computed from the FFT estimation.
^

f

2.3 Review SVM-based classification

It has been shown that the SVM method provides very good results in many practical
cases [16], [17]. SVM is an universal learning machine developed by Vladimir
Vapnik [4] in 1979. A review of the basic principles follows, using the example of a
2-class problem (whatever the number of classes, the problem can be reduced, by a
“one-against-others” method, to a 2-class problem). The SVM performs a mapping of
the input vectors (objects) from the input space (initial feature space) R into a high
dimensional feature space Q; the mapping is determined by a kernel function K. It
finds a linear decision rule in the feature space Q in the form of an optimal separating
boundary, which leaves the widest margin between the decision boundary and the
input vector mapped into Q. This boundary is determined by solving the following
constrained quadratic programming problem

d

:

Draft in Springeronline.com

4

Draft in Springeronline.com

Maximize:

() (i j
1 1 1

1W
2

n n n

i i j i j
i i j

y y Kα α α α
= = =

= −∑ ∑∑)x , x (1.6)

Under the constraints

1
0

n

i i
i

yα
=

=∑ (1.7)

and 0 i Tα≤ ≤ for i=1, 2, …, n where xi ∈ Rd are the training sample set vectors,
and yi ∈{-1,+1} the corresponding class label. T is a constant needed for non
separable classes. K(u,v) is an inner product in the feature space Q which may be
defined as a kernel function in the input space. The condition required is that the
kernel K(u,v) be a symmetric function which satisfies the following general positive
constraint:

() () ()u, v g u g v du d v 0

dR

K >∫∫ (1.8)

Which is valid for all g≠0 for which ()2g u du < ∞∫ (Mercer’s theorem).

The choice of the kernel K(u, v) determines the structure of the feature space Q. A
kernel that satisfies the equation (1.8) may be presented in the form:

() () ()u, v u vk k k

k
K a= Φ Φ∑ (1.9)

Where ak are positive scalars and the functions Φk represent a basis in the space Q.
We use a Radial Basis Function SVM (RBF):

()

2

2
x y
2x, yK e σ

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝= ⎠ (1.10)

The separating plane is constructed from those input vectors, for which αi≠0.

These vectors are called support vectors and reside on the boundary margin. Mapping
the separating plane back into the input space Rd, gives a separating surface which
forms the following nonlinear decision rules:

() ()
1

C x Sgn s , x
Ns

i i i
i
y K bα

=

⎛ ⎞⎟⎜ ⎟= ⋅ +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ (1.11)

This robust method is not often used for high speed decision problems such as fast
video, because of the complexity of the decision rule. Nevertheless, we have shown

Draft in Springeronline.com

5

Draft in Springeronline.com

that real-time performance can be obtained. Indeed, we proposed in previous studies
[15] [5] a FPGA based implementation of an approximation of the support vector
machine decision rule. If we combine this implementation of the decision function
with the implementation of the Fourier Descriptors computation described below, it
will be possible to implement the full real time recognition process using a single
FPGA component.

3. Performance evaluation

Performance evaluation is a critical step which has to be performed in order to
validate an object recognition algorithm. The test protocol used for performance
evaluations is a standard cross-validation method (SVM classification error
measurements based on multiple tests using separated training and decision sample
sets). We tested our approach using several standard databases, and we evaluated the
robustness against noise addition and light variation.

 3.1 General evaluation

The first database is the COIL-100 [18] which is composed of color images of 100
different objects, where 72 images of each object were taken at pose intervals of 5°.
The images were pre-processed in such a way that each of them fits the size of
128x128 pixels. The second and third databases are composed of images of human
faces. Indeed, face recognition is a difficult problem for which many methods have
been examined [19] [20].
The ORL database [21] used in this paper is composed of 400 gray level images of
size 112x92; there are 40 faces with ten images per face. The images are taken at
different moments in time, with varying lighting conditions, facial expressions
(open/closed eyes, smiling/not-smiling), and facial details (glasses/no glasses). All the
subjects are an up-right, frontal position (with tolerance for some pose variation).
The AR-faces database was created by Martinez in the computer vision center [22]. It
contains over 4.000 color images corresponding to 126 people’s faces (70 men and 56
women). Images feature frontal view faces with different facial expressions,
illumination conditions, and occlusions (sunglasses and scarf). Each image in the
database consists of a 786x576 array of color pixels (RGB).
The error rate is shown in table 1; we have compared our descriptors to other
classification families of invariants, such as Zernike moments [23].
Other methods in the literature testing the COIL-100 database provide error rates
ranging from 12.5% to 0.1%. See for instance [24].

Draft in Springeronline.com

6

Draft in Springeronline.com

SVM, RBF
Kernel

 0.1optσ =

COIL

ORL

AR-faces

LAFs [24] 0.1% NA NA
Nearest-Neigbor

[20]
NA 2.1% NA

Gabor wavelet
[19]

NA 15% NA

Eigenface –
SVM [22]

NA NA 5%

Fourier
Descriptors 0.09% 9.5% 2.31%

Zernike
Moments 0.22% 25% 10.61%

Table1: Performance evaluation (error rate using cross-validation)

It is clear that the Fourier Descriptors outperform the Zernike Moments in all cases,
and our results are similar to or better than (for COIL and AR-faces databases)
performances obtained by other authors using the same databases [24] [22].

 3.2 Robustness against noise

In order to study the robustness of Fourier Descriptors against noise addition, we
evaluated the classification error obtained using a noisy database. This database was
created by adding some Gaussian noises to the COIL images. In order to test several
noise levels, we created databases with different standard deviations Sd (0.08< Sd
<0.23). Some examples of noisy images are depicted in Fig 2.

Fig. 2. Sample of COIL noisy object

Table 2 presents our results with noisy databases. Results show noise has little
influence on classification performance.

Draft in Springeronline.com

7

Draft in Springeronline.com

St. Dev.

of Gaussian
noise

Zernike
Moments

Fourier
Descriptors

0.08 0.29% 0.36%
0.16 0.34% 0.40%
0.23 0.43 % 0.38 %

Table 2: Robustness against noise (error rate using cross-validation)

3.3 Robustness with respect to lighting variation

We performed several robustness tests with lighting variations using a self made
database of 15 objects. We provided images corresponding to two lighting conditions
(Fig 3). We trained the system with images taken in the first lighting conditions and
we tested the data set obtained with the second lighting conditions.

Fig 3: Different Lighting conditions

In this experiment we introduced a pre-processing step which consisting of contour
extraction, based on a simple Sobel filter. The results are depicted in Fig 4. The
horizontal axis represents the learning sample percentage and the vertical axis
represents the error rate. We observe that, as expected, contour extraction improves
the results, since the error e< 5% is obtained when only 4% of samples are used
during the training step, while without contour extraction the error is e≈10%. A lower
image number is therefore required using contour extraction as a preprocessing step.

Draft in Springeronline.com

8

Draft in Springeronline.com

0

5

10

15

20

25

1 3 5 7 9 11 13 15

Learning Sample (%)

Er
ro

r r
at

e
(%

)

Without Contour
With Contour

Fig 4: Influence of contour-extraction on classification error

These experiments show that Fourier Descriptors can be used for real time
applications such as face recognition [20] and quality control by artificial vision. For
all these applications, high speed custom hardware is often useful and sometimes
necessary.

4. Hardware Implementation

4.1 General Specification

Recently, some research has been launched on the subject of hardware and software
(HW/SW) Co-design. The Co-design approach consists of several steps such as, high
level HW/SW Co-simulation partitioning and system prototyping. The Co-design
approach analyzes the timing of the different portions of the algorithm. The time
extensive parts are implemented in hardware if resources thus permit. This is known
as “Hardware Acceleration”. Using the Co-design methodology in embedded systems
development provides the capability of meeting strict design constraints in terms of
power, size and timing. We analyzed the full recognition process in order to
determine which part of the algorithm needed to be accelerated.
As mentioned in the introduction, the object recognition process is divided into two
steps: training and decision. During both steps the input image is resampled to
128x128 pixels, and a standard FFT is computed for each color channel (Red, Green,
and Blue) (Fig 5). The three corresponding Fourier Descriptors are computed from the
FFT values. The final size of the vector used for classifier training is d=63x3=189
(the first component value for each channel is used for normalization). The result of
the training step is the model (set of support vectors) determined by the SVM based
method.

Draft in Springeronline.com

9

Draft in Springeronline.com

Color
Image

2D FFT FDR

Model SVM
training

Class

R

G

B

2D FFT

2D FFT

FDG

FDB

Fig. 5. Training process

During the decision step, which is the only one computed in real-time, the Fourier
Descriptors are computed in the same way, and the model determined during the
training step is used to perform the SVM prediction. The output is the image class
(Fig 6).

Color
Image

2D FFT FDR

Model SVM
prediction

Class

R

G

B

2D FFT

2D FFT

FDG

FDB

Hardware

Software

Software

Fig. 6. Decision process

In our applications (face or object recognition for quality control by artificial

vision), the complexity of the decision function is lower than that of the feature
computation. Typically, we obtain around 100 support vectors, so the SVM prediction
can be performed in 5 ms on a standard PC, whereas the FD extraction is completed
in 30 ms. we therefore decided to implement FD computation on hardware to
accelerate the process.

4.2 Prototyping Platform and design methodology

In order to implement the full HW/SW co-design, we used a prototyping platform
developed by Calgary University and the MPEG/ISG group [26] [27]. The platform is
based on a standard PC and a single PCMCIA FPGA-based board. This board is the
WILDCARD PCMCIA (Xilinx Virtex II XCV3000) card from Annapolis Micro

Draft in Springeronline.com

10

Draft in Springeronline.com

Systems [28] and is plug-compatible into a laptop Cardbus slot. The WILDCARD has
a very compact architecture with a Virtex II 3000K FPGA from Xilinx, and two
SRAM banks, each 256 KB in size. The WILDCARD uses the 32-bit CardBus
interface, using a dedicated chip to provide this bus support. The architecture block
diagram is presented in Fig 7.
Each of the two memory blocks, referred to as the right and left memory banks, is
64Kx32-bit RAM module, with a 16-bit address bus and 32-bit data word. The FPGA
can write and read from the right and left memories independently. The host interface
is through a 32-bit CardBus (PCMCIA) controller that operates at a 33 MHz clock
frequency. Data transfers to and from the PC host are performed via the control of a
set of C program driver calls that interface with the CardBus controller which, in turn,
interfaces with the LAD bus to send data to, and retrieve data from, the FPGA [28].
A standard HDL–based design methodology was used. We model the algorithm using
the VHDL hardware description language; we functionally verify the correctness of
the algorithm in the custom architecture, and then we synthesize the architecture onto
a set of resources to produce a circuit mapped to target the FPGA device. VHDL
modules that come with the card are written to target a specific synthesis tool.

The VHDL modules are easily interconnected to a PCI interface using the
Application Programming Interface (API) provided by the WILDCARD vendor.
These modules are hardware accelerators that can be controlled and called from the
host with a high abstraction level. Indeed, from the host’s point of view, the
accelerator’s calls can be considered as usual C functions. The set of hardware
accelerators is a co-processor which provides a high level of parallelism (intrinsic
parallelism of the FPGA, and parallelism obtained by the association of the host and
the FPGA). Most of the platform’s IP have been developed in an image compression
context to achieve real time performances [29] [30]. We propose to take advantage of
the Wildcard platform capacities for our color object recognition application.

FPGA

adress

32 bits
Data

16 bits
Data
32 bits

Right
RAM

Right
I/O

Clock
LAD Bus CardBus CardBus

32 bits, 50 Mhz
32 bits, 50 Mhz

16 bits

32 bits

32 bits

adress

Data

Data

Left
RAM

Right
I/O

Host
processor

Fig. 7 WILDCARD Block Diagram [28].

Draft in Springeronline.com

11

Draft in Springeronline.com

4.3 Architecture for FD implementation

Global architecture
The aim of our work is to achieve the hardware implementation of Fourier
Descriptors computation according to equation (2). The processing can be split in two
computational steps:

- Computation of the Fourier transforms of the image
^

f f , using 2D FFT.

- Computation of some integral expression of over circles in the frequency
plane.

^

f

The proposed architecture is shown in detail in Fig 8. It is constituted of five main
units: Input/Output FIFO memories, 2D-FFT accelerator, Fourier Descriptors
accelerator, a set of two temporary memories, and a controller based on a Finite State
Machine (FSM) which controls the process. The proposed architecture has two basic
FIFO (RAM) blocks of 4K. The FIFO_in and FIFO_out are in charge of data
exchange between the host and the 2D FFT accelerator. These units simplify task
scheduling and prevent asynchronism.

2D FFT

 Host
(PC)

FIFO_in

FIFO_out In
te

rc
on

ne
ct

in
g

U
ni

t

Real FFT
memory

Imaginary

FFT
memory

FD

computation

Fig 8: Data-flow architecture of the hardware accelerator

Draft in Springeronline.com

12

Draft in Springeronline.com

2D FFT computation

The 2D FFT was designed to support large size images. For instance, we propose
in this paper a core implementation for 128x128 color images. The 2D FFT is
processed for each color channel (red, green and blue). The accelerator is based on the
Xilinx standard Logic Core 1D FFT IP Core configured for 128 points, operating
using 16-bit data. This FFT core implements the Cooley-Tukey algorithm, using
pipeline and streaming I/O. This solution offers continuous data processing. The core
is able to perform transform calculations on the current data frame, while
simultaneously loading for the next data frame, and unloading the results of the
previous data frame. Depending on the performance required, the architecture can
easily be adapted. In the 1 D configuration, the design is a low cost solution in term of
HW resources. The performance can be increased easily by adapting the IP to process
several rows or columns in parallel or by multiplying the number of IP to process the
three color channel simultaneously.
The 2D FFT is separated into rows and columns, so the process is split into two steps:

- In the first step the FFT-IP is used to compute the FFT 1D of each row of
the input image. The results are stored in two memories for real and imaginary parts
of the FFT (steps labeled 1 and 2 in Fig 9).

- In the second the FFT-IP is reactivated to compute the FFT 1D of the
column of the FFT image formed by the previously stored results (steps labeled 3 and
4 in Fig.9).
The final results are the real and imaginary data parts of the FFT stored in two
separate memories (Fig 9).

Original image
provided by

FIFO_in

Temporary FFT Imaginary

Temporary FFT Real

FFT-IP

RAM
2D-FFT
Real Data

RAM
2D-FFT
Im Data

1

2

2 3

3

4

Fig 9: Diagram block of 2D-FFT computation

Draft in Springeronline.com

13

Draft in Springeronline.com

Circular integration for FD computation

The integral values to be computed according to eq. (1.2) are approximated by
accumulating the FFT values which belong to a centered crown. Each crown is one
pixel wide in the Fourier space, and provides one Fourier Descriptor (see Fig 10).
Therefore, 64 FD values are obtained for a 128x128 image. The central value is used
for normalization (performed by the host) and the other 63 values are the components
of the feature vector used for classification.

For each pixel of the Fourier space, the radius of the crown which it belongs to
must be determined. In order to avoid this high-cost computation in terms of time
processing and hardware resources, we propose that these fixed values be computed
off-line and stored in a 128x128 ROM.

 5 5 5
 5 4 4 4 5
 5 4 3 3 3 4 5
 5 4 3 2 2 2 3 4 5
 5 4 3 2 1 2 3 4 5
 5 4 3 2 2 2 3 4 5
 5 4 3 3 3 4 5
 5 4 4 4 5
 5 5 5

Fig 10: Example of considered circles in the Fourier space

The architecture of the circular integration is depicted in Fig 11. The radius-ROM
address is determined by the pixel position (row and column values). The radius value
read in this radius-ROM is used as an address of the FD-RAM (64 words of 16 bit
width), where FD final values are stored. The FD-RAM data output is connected to an
adder in order to form an accumulator. The other input of the adder is the squared
value of the FFT module. The FD-RAM content is initialized to 0 for each new
image. The final FD values are read after the last pixel processing, and transmitted to
the host using the FIFO_out. One accumulation is composed of four steps:

 1- Read the radius in Radius-ROM, and the FFT values in the 2D FFT RAM,
2- Read the previous FD value in the FD-RAM and compute the squared
FFT module,

 3- Add the previous FD value and the squared FFT module,
 4- Store the resulting value in the FD-RAM.
A control unit schedules the data flow.

Draft in Springeronline.com

14

Draft in Springeronline.com

Radius

Reset

Pixel position

Radius-
ROM

squared
FFT

Module

ADD

FD-RAM

D A

Din

A

Dout

FIFO out

RAM 2D FFT
Real data

RAM 2D FFT
Imaginary data

Fig 11: Block diagram architecture for computing Fourier Descriptors

4.4 Experimental Results

The architecture described above was simulated and implemented targeting Xilinx
FPGA. The hardware implementation results are shown in table 3, for one color
channel 128x128. The working frequency is about 33 Mhz.
The execution time of the same part of the algorithm, using the same optimizations
(use of radius-ROM) on µP-based with Pentium 4 (2.81 GHz) is 10 ms. The execution
time of the FPGA implementation part is approximately 0.5 ms. Taking into account
the time required for data transfer between the host and the Wildcard, the whole
execution time of the SW/HW process is around 1 ms. The acceleration factor is
therefore about 10.

Logic Utilization Used Available Utilization

Number of Slices 2900 14336 20%
Number of Slice Flip Flops 3495 28672 12%
Number of 4 input LUTs 4072 28672 14%
Number of bonded IOBs 68 484 14%
Number of BRAMs 41 96 43%
Number of MULT18X18s 14 96 15%

Table 3: Synthesis of results of Fourier Descriptor implementation

5. Conclusion

An efficient FPGA based architecture for hardware acceleration of Fourier
Descriptors has been presented in this paper.

The classification performance of the proposed method was evaluated using
several standard databases, and revealed that our approach can be useful in many
applications of object recognition.

Draft in Springeronline.com

15

Draft in Springeronline.com

The prototyping platform used is based on a Wildcard, allowing an easy to use co-
processing system to be designed. The image acquisition and the final classification
using SVM are executed in software, while the feature vector computation is
implemented in hardware. This has allowed us to accelerate global execution time in
order to meet real time constraints.

The obtained acceleration is around 10 for one color channel, and can be increased
using a pipelined model for each color channel.

It is important to note as well that Fourier Descriptors can also be used in multiple
Regions of Interest of larger images, or as local feature vectors, as well as in many
algorithms based on the windowed Fourier transform. In these cases, for which the
window size is frequently smaller than the one presented in this paper (typically
32x32 of 16x16 windows) our architecture can easily be adapted to these smaller
windows, and duplicated in the FPGA to improve parallelism.

The HW/SW solution presented here may be considered as a first implementation.
We also worked in the past on the FPGA implementation of an approximation of the
SVM decision function [15]. Our future work will therefore address the integration of
the whole recognition process – feature extraction and classification - on the FPGA,
freeing the host processor for other tasks.

References

1. R. Reyna Rojas, R. Houzet, M. F. Albenge, D. Esteve, “Implementation of the SVM neural
network generalization function of for image processing”, International Workshop on
Computer Architecture for Machine Perception (CAMP’2000), Padova (Italy), 11-13
Septembre 2000, pp. 147-151.

2. J. Zhu, P. Sutton, FPGA Implementation of neural networks: “a survey of a decade of
progress”, in: Proceedings of the 13th International Conference on Field Programmable
Logic and Applications (FPL 2003), Lisbon, Portugal, 2003, pp. 1062–1066.

3. F. Yang , M. Paindavoine, “Implementation of a RBF neural network on embedded systems:
Real time face tracking and identity verification”, IEEE Transactions on Neural Networks,
Vol.14 (N°5), (2003), pp. 1162-1175.

4. V. Vapnik, “The nature of statistical learning theory”, Springer-Verlag, (1995) New York.
5. Y. Raj Bahadur, K. Naveen Nishchal, K Arun Gupta, K. Vinod Rastogi, “Retrieval and

classification of shape-based objects using Fourier, generic Fourier, and wavelet Fourier
Descriptors technique: A comparative study”, Optics and Lasers in engineering 45, 2007,
pp. 695-708.

6. F. Javier Diaz, A. M Buron, J. M. Solana, “Haar wavelet based processor scheme for image
coding with low circuit complexity”. Computers and Electrical Engineering 33, 2007, pp.
109-126.

7. J. P.Gauthier, G. Bornard, M. Silbermann, “Harmonic analysis on motions groups and their
homogenous spaces” , IEEE Trans. on Systems, Man and Cyb., vol 21, 1991, pp. 159-172.

8. H. Fonga, Analyse harmonique sur les groupes et reconnaissance de formes, PHD thesis,
université de Grenoble, 1992.

9. F. Smach, C. Lemaitre, J. Mitéran, J.P. Gauthier , M. Abid, “Colour Object recognition
combining Motion Descriptors, Zernike Moments and Support Vector”, Proceeding of
IECON’06, IEEE, Paris-CNAM, France, 2006, pp. 3238-3242.

10. D. Crookes, K. Benkrid, A. Bouridane, K. Alotaibi and A. Benkrid, “Design and
implementation of a high level programming environment for FPGA-based image

Draft in Springeronline.com

16

Draft in Springeronline.com

processing”, IEE Proceedings on Vision, Image and Signal Processing, vol 147(4), 2000, pp
377-384.

11. M. A. Tahir , A. Bouridane, and F. Kurugoullu, “An FPGA based coprocessor for GLCM
and Haralick texture features and their application in prostate cancer classification”, Analog
Integrated Circuit and Signal Processing, vol. 35, 2005, pp. 205-215.

12. D. Nguyen, D. Halupka, P. Aarabi, A. Sheikholeslami, “Real-time face detection and lip
feature extraction using field programmable gate arrays”, IEEE Transactions on Systems,
Man, and Cybernetics-Parts B: Cybernetics, vol. 36, no 4, 2006, pp. 902-912.

13. R. Mukherjee, A Jones, P. Banerjee, “System Level Synthesis of Multiple IP Blocks in the
Behavioral Synthesis Tool”, Int. Conf. on Parallel and Distributed Computing and Systems
(PDCS), 2003.

14. Z. Guo, A. Mitra, W. Najjar, “Automation of IP Core Interface General for Reconfigurable
Computing”. 16th International Conference on Field programmable Logic Applications (FPL
2006) Madrid, Spain, 2006.

15. J. Mitéran, S. Bouillant, E. Bourennane, “SVM Approximation for Real-time Image
Segmentation by Using an Improved Hyperrectangles-based Method, Real Time imaging”.
Elsevier, vol. 9 (3), 2003, pp. 179-188.

16. P. Niyogi, C. Burges, P. Ramesh, “Distinctive Feature Detection Using Support Vector
Machines”, ICASSP 99, 1999, pp. 425-428.

17. B. Schölkopf, A Smola, K-R. Müller, C.J.C. Burges and V. Vapnik, “Support Vector
methods in learning and feature extraction”, Australian Journal of Intelligent Information
Processing Systems, vol. 1, 1998, pp. 3-9.

18. htttp://www.columbia.edu/CAV.
19. E. Hjelmas, “Face Detection: A Survey”, Computer Vision and Image Understanding, no.

83, 2001, pp. 236-274.
20. R. Huang, V. Pavlovic, D. N. Metxas, “A hybrid face Recognition Method using Markov

random Field”s, in Proceeding of ICPR, 2004, pp. 157-160.
21. ORL face database, AT&T Laboratories, Cambridge, U.K. http://www.cam-

orl.co.uk/facedatabase.html.
22. A M. Martinez, “Recognition of Partially Occluded and/or Imprecisely Localized Faces

Using Probabilistic Approach”, Proceeding of IEEE Computer Vision and Pattern
Recognition, CVPR’2000, pp. 712-717.

23. A. Khotanzad, H.H. Yaw, “Invariant image recognition by Zernike moments”, IEEE Trans.
PAMI, vol. 12, no. 5, 1990, pp. 489-497.

24. S. Obrzalek and J. Matas, “Object recognition using local affine frames on distinguished
regions”, Electronic Proceeding of the 13th British Machine Vision Conference, University
of Cardiff, 2002, pp. 113-122.

25. G. D. Guo, S. Li, and K. Chan, “Face recognition by support vector machines”, Proceedings
of International Conference on Automatic Face and Gesture Recognition, 2000, pp 196-201.

26. Q. Yifeng, W. Badawy, “Tutorial on an Integrated Virtual Socket Hardware-Accelerated
Co-design Platform for MPEG4-Part9 ISO/IEC JTC1/SC29/WG11 M12789”, Bangkok,
Thailand – January 2006, pp. 03-28.

27. P. Schumacher, M. Mattavelli, A. Chirila-Rus, R. Turney, “A Virtual Socket Framework
for Rapid Emulation of Video and Multimedia Designs”, Multimedia and Expo, ICME
2005, 6-8 July 2005, pp. 872 – 875

28. Annapolis Microsystems Inc, Annapolis WILDCARD System Reference Manual, Revision
2.6, 2003, www.annapmicro.com

29. J. Dubois, M. Mattavelli, L. Pierrefeu, J. Mitéran, “Configurable Motion-Estimation
Hardware Accelerator Module for the MPEG-4 Reference Hardware Description Platform”,
Proceeding of IEEE International Conference on Image processing (ICIP), Genova, 11-14th
September, vol. 3, 2005, pp. 1040-1043.

Draft in Springeronline.com

17

http://www.cam-orl.co.uk/facedatabase.html
http://www.cam-orl.co.uk/facedatabase.html
http://www.annapmicro.com/

Draft in Springeronline.com

30. A. Kinane, V. Muresan, N. E. O’Connor, N. Murphy, S. Marlow, “Energy-Efficient
Hardware Architecture for variable N-point 1D DCT” Proceeding of PATMOS, 2004, pp.
780-788.

Draft in Springeronline.com

18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

