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Abstract. Fourier Descriptors can be used as feature vector components in various 
applications, such as real-time color object recognition or image retrieval. The full process is 
composed of the feature extraction followed by a classification step performed using Support 
Vector Machine (SVM). In order to accelerate the computation of Fourier Descriptors, a 
hardware implementation using FPGA technology is presented in this paper. We evaluated 
classification performance with respect to lighting variations and noise sensibility. Several 
experiments were carried out on three databases. Then an efficient architecture for FD 
computation on FPGAs is proposed and designed as accelerator. The WildCard is used to 
prototype this implementation. This design can have an operation speed up of approximately 10 
compared to the standard software PC implementation.

 

Keywords: Fourier Descriptors, color object recognition, Field Programmable Gate 
Array (FPGA), SVM. 

1. Introduction 

Feature extraction and object recognition are subjects of extensive research in the 
field of image processing. Color object recognition is widely used in the machine 
vision industry in real time applications. A central issue is the recognition of objects 
independently of their position. To do this, the real-time extraction of invariant 
descriptors with respect to similarity transformations, while taking the local texture 
into account, remains a crucial challenge: it often consumes most important of the 
computation time of the recognition process. We therefore focused on the acceleration 
of feature computation in this paper. In other works, authors have dealt with the 
classification implementation issue [1] [2] [3]. 
The recognition process is divided into two parts: the training (the off-line phase) and 
decision steps (the on-line phase) (Fig 1). The result of the training step is the model 
determined by the SVM based method [4]. During the decision step, the object is 
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classified using a feature vector, the classifier and the model which was previously 
computed. 
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 Fig. 1. Recognition steps  

 
Fourier Descriptors are used as feature vector components in various applications, 
such as object classification, and image retrieval [5] [6]. Gauthier et al [7] proposed a 
family of invariants in translation, rotation, and scale. H. Fonga [8] extended the 
Fourier Descriptors, defining Similarity Descriptors and applying them to gray level 
images. We extended the notion of Fourier Descriptor invariants to color images 
classification in [9]. As mentioned above, our aim here is to accelerate the 
computation of Fourier Descriptors with hardware implementation. We propose in 
this paper efficient hardware architecture for FD implementation on Field 
Programmable Gate Arrays (FPGAs). FPGAs were originally developed for hardware 
circuit designs. They may be used as powerful computing systems for image 
processing algorithms [10] [11] [12] [6]. These computations can be performed much 
faster than on the host PC, mainly because of the high parallelism allowed by the 
internal structure of the component. Thus, the FPGA devices on which such 
applications are built offer a good medium for implementing complex computational 
tasks characterized by high throughput and low latency requirements, providing 
orders of magnitude speedup in application processing at a fraction of the cost per 
processing operation. On the other hand, pre-designed Intellectual Property (IP) cores 
for FPGA represent a huge intellectual and financial wealth that must be leveraged by 
any high-level tool targeting reconfigurable platforms. These IP cores come in the 
form of synthesizable HDL code or even lower level descriptions. They vary 
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drastically with respect to their control and timing protocol specifications, which are 
intended to be interfaced to HDL-based designs. Several projects have focused on bus 
wrapping that connects IP cores with microprocessors. In [13], Mukherjee describe a 
system level approach for interfacing IP blocks generated by the behavioral synthesis 
tool itself. In [14], Guo proposed an automation of IP core interface generation for 
reconfigurable computing. The main contributions of this paper are: the application of 
Fourier Descriptors to color object recognition and the development of a hardware 
accelerator for feature invariant computing. The work reported in this paper can be 
combined with the previous work by Miteran and al. who proposed in [15] a hardware 
implementation of an approximation of the SVM decision function. 

This paper is organized as follows: Section 2 is a review of Fourier Descriptors and 
SVM based classifiers. Section 3 describes the evaluation of classification 
performances using software implementation. In section 4 we propose our hardware 
architecture. Section 5 concludes the paper. 

2 Review of Fourier Descriptors and SVM classifier 

There exists an extensive literature which addresses both the theoretical and applied 
aspects of invariant descriptors. It is important that such invariants fulfill certain 
criteria such as low computational complexity and completeness. A complete 
invariant implies that two objects have the same shape if and only if their invariant 
descriptors are the same. The invariant property is relative only to a certain 
transformation. A feature vector of a Fourier Descriptor invariant with respect to 
similarity transformations (rotation, translation and scale) is used as an input in a 
Support Vector Machine (SVM) based classifier. This section will first give a brief 
definition and outline the elementary properties of Fourier Descriptor invariants. This 
is then followed by a brief description of a SVM classifier.  

2.1 Definition of Fourier Descriptors  

Fourier Descriptors (FD) are defined as follows. Let f  be a square summable 

function on the plane, and  its Fourier transform: 
^

f

(
2

^

( ) = ( )exp | )f x j xf ξ −∫ dxξ     (1.1) 

Where . | .  is the scalar product in . 2

If  are polar coordinates of the point ξ , we shall again denote  the 

Fourier transform of

( , )λ θ
^

( , )f λ θ

f  at the point( , . Gauthier defined the mapping )λ θ fD from 
into  by + +
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( )
2 2^

0

 = ( , )fD f
π

λ λ θ∫ dθ      (1.2) 

 
fD  is the Fourier Descriptor of the image f , i.e. the feature vector which describes 

each image and will be used as an input in the supervised classification method. 

2.2 Properties of Fourier Descriptors 

Fourier descriptors, calculated according to the equation (1.2), have several 
elementary properties which are crucial for invariant object recognition [7]: 
Fourier descriptors are motion and reflexion-invariant: 

 If M is a “Motion” and f  and  are images such 
as , where

g
( )( ) ( )g x f M x= ( )( )f M x  is a composed 

function: f applied to . Thus, images and ( )M x g f have the same 
descriptorsD : 

2( ) ( ),g fD Dλ λ λ= ∀ ∈       (1.3) 
 If there exists a reflexion ℜ such that ,  ( )( ) ( )g x f x= ℜ

 
2( ) ( ),g fD Dλ λ λ= ∀ ∈      (1.4) 

 
Motion descriptors are scaling-invariant: 

 if k is a real constant such as , ( ) ( )g x f kx=
 

2
4
1( ) ( ),g fD D

kk
λλ = ∀ ∈λ      (1.5) 

The Fourier transform  will be computed from the FFT estimation. 
^

f

2.3 Review SVM-based classification  

It has been shown that the SVM method provides very good results in many practical 
cases [16], [17]. SVM is an universal learning machine developed by Vladimir 
Vapnik [4] in 1979. A review of the basic principles follows, using the example of a 
2-class problem (whatever the number of classes, the problem can be reduced, by a 
“one-against-others” method, to a 2-class problem). The SVM performs a mapping of 
the input vectors (objects) from the input space (initial feature space) R  into a high 
dimensional feature space Q; the mapping is determined by a kernel function K. It 
finds a linear decision rule in the feature space Q in the form of an optimal separating 
boundary, which leaves the widest margin between the decision boundary and the 
input vector mapped into Q. This boundary is determined by solving the following 
constrained quadratic programming problem

d

:  
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Maximize: 
 

( ) ( i j
1 1 1
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= −∑ ∑∑ )x , x    (1.6) 

 
Under the constraints  

 

1
0

n

i i
i

yα
=

=∑       (1.7) 

 
and 0 i Tα≤ ≤  for i=1, 2, …, n where xi ∈ Rd are the training sample set vectors, 
and yi ∈{-1,+1} the corresponding class label. T is a constant needed for non 
separable classes. K(u,v) is an inner product in the feature space Q which may be 
defined as a kernel function in the input space. The condition required is that the 
kernel K(u,v) be a symmetric function which satisfies the following general positive 
constraint: 

 
( ) ( ) ( )u, v g u g v du d v 0

dR

K >∫∫     (1.8) 

 
Which is valid for all g≠0 for which ( )2g u du < ∞∫  (Mercer’s theorem). 

The choice of the kernel K(u, v) determines the structure of the feature space Q. A 
kernel that satisfies the equation (1.8) may be presented in the form:  

 
( ) ( ) ( )u, v u vk k k

k
K a= Φ Φ∑      (1.9) 

 
Where ak are positive scalars and the functions Φk represent a basis in the space Q. 
We use a Radial Basis Function SVM (RBF): 

 

( )

2

2
x y
2x, yK e σ

⎛ ⎞− − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝= ⎠       (1.10) 
 
The separating plane is constructed from those input vectors, for which αi≠0. 

These vectors are called support vectors and reside on the boundary margin. Mapping 
the separating plane back into the input space Rd, gives a separating surface which 
forms the following nonlinear decision rules:  

 

( ) ( )
1

C x Sgn s , x
Ns

i i i
i
y K bα

=

⎛ ⎞⎟⎜ ⎟= ⋅ +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑     (1.11) 

This robust method is not often used for high speed decision problems such as fast 
video, because of the complexity of the decision rule. Nevertheless, we have shown 
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that real-time performance can be obtained. Indeed, we proposed in previous studies 
[15] [5] a FPGA based implementation of an approximation of the support vector 
machine decision rule. If we combine this implementation of the decision function 
with the implementation of the Fourier Descriptors computation described below, it 
will be possible to implement the full real time recognition process using a single 
FPGA component. 

3. Performance evaluation 

Performance evaluation is a critical step which has to be performed in order to 
validate an object recognition algorithm. The test protocol used for performance 
evaluations is a standard cross-validation method (SVM classification error 
measurements based on multiple tests using separated training and decision sample 
sets). We tested our approach using several standard databases, and we evaluated the 
robustness against noise addition and light variation. 

  3.1 General evaluation 

The first database is the COIL-100 [18] which is composed of color images of 100 
different objects, where 72 images of each object were taken at pose intervals of 5°. 
The images were pre-processed in such a way that each of them fits the size of 
128x128 pixels. The second and third databases are composed of images of human 
faces. Indeed, face recognition is a difficult problem for which many methods have 
been examined [19] [20].  
The ORL database [21] used in this paper is composed of 400 gray level images of 
size 112x92; there are 40 faces with ten images per face. The images are taken at 
different moments in time, with varying lighting conditions, facial expressions 
(open/closed eyes, smiling/not-smiling), and facial details (glasses/no glasses). All the 
subjects are an up-right, frontal position (with tolerance for some pose variation).  
The AR-faces database was created by Martinez in the computer vision center [22]. It 
contains over 4.000 color images corresponding to 126 people’s faces (70 men and 56 
women). Images feature frontal view faces with different facial expressions, 
illumination conditions, and occlusions (sunglasses and scarf). Each image in the 
database consists of a 786x576 array of color pixels (RGB). 
The error rate is shown in table 1; we have compared our descriptors to other 
classification families of invariants, such as Zernike moments [23].  
Other methods in the literature testing the COIL-100 database provide error rates 
ranging from 12.5% to 0.1%. See for instance [24]. 
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SVM, RBF 
Kernel 

 0.1optσ =

 
COIL 

 
ORL 

 
AR-faces 

LAFs [24] 0.1% NA NA 
Nearest-Neigbor 

[20] 
NA 2.1% NA 

Gabor wavelet 
[19] 

NA 15% NA 

Eigenface – 
SVM [22] 

NA NA 5% 

Fourier 
Descriptors 0.09% 9.5% 2.31% 

Zernike 
Moments 0.22% 25% 10.61% 

Table1: Performance evaluation (error rate using cross-validation) 
 

It is clear that the Fourier Descriptors outperform the Zernike Moments in all cases, 
and our results are similar to or better than (for COIL and AR-faces databases) 
performances obtained by other authors using the same databases [24] [22]. 

  3.2 Robustness against noise 

In order to study the robustness of Fourier Descriptors against noise addition, we 
evaluated the classification error obtained using a noisy database. This database was 
created by adding some Gaussian noises to the COIL images. In order to test several 
noise levels, we created databases with different standard deviations Sd (0.08< Sd 
<0.23). Some examples of noisy images are depicted in Fig 2.  

 

 
Fig. 2. Sample of COIL noisy object 

 
Table 2 presents our results with noisy databases. Results show noise has little 
influence on classification performance.  

 
Draft in Springeronline.com 

7



Draft in Springeronline.com 

 
St. Dev. 

of Gaussian 
noise 

Zernike 
Moments 

Fourier 
Descriptors 

0.08 0.29% 0.36% 
0.16 0.34% 0.40% 
0.23 0.43 % 0.38 % 

Table 2: Robustness against noise (error rate using cross-validation) 

3.3 Robustness with respect to lighting variation  

We performed several robustness tests with lighting variations using a self made 
database of 15 objects. We provided images corresponding to two lighting conditions 
(Fig 3). We trained the system with images taken in the first lighting conditions and 
we tested the data set obtained with the second lighting conditions.  

 

 

  
Fig 3: Different Lighting conditions 

 
In this experiment we introduced a pre-processing step which consisting of contour 
extraction, based on a simple Sobel filter. The results are depicted in Fig 4. The 
horizontal axis represents the learning sample percentage and the vertical axis 
represents the error rate. We observe that, as expected, contour extraction improves 
the results, since the error e< 5% is obtained when only 4% of samples are used 
during the training step, while without contour extraction the error is e≈10%. A lower 
image number is therefore required using contour extraction as a preprocessing step. 
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Fig 4: Influence of contour-extraction on classification error  

 
These experiments show that Fourier Descriptors can be used for real time 
applications such as face recognition [20] and quality control by artificial vision. For 
all these applications, high speed custom hardware is often useful and sometimes 
necessary. 

4. Hardware Implementation 

4.1 General Specification 

Recently, some research has been launched on the subject of hardware and software 
(HW/SW) Co-design. The Co-design approach consists of several steps such as, high 
level HW/SW Co-simulation partitioning and system prototyping. The Co-design 
approach analyzes the timing of the different portions of the algorithm. The time 
extensive parts are implemented in hardware if resources thus permit. This is known 
as “Hardware Acceleration”. Using the Co-design methodology in embedded systems 
development provides the capability of meeting strict design constraints in terms of 
power, size and timing. We analyzed the full recognition process in order to 
determine which part of the algorithm needed to be accelerated. 
As mentioned in the introduction, the object recognition process is divided into two 
steps: training and decision. During both steps the input image is resampled to 
128x128 pixels, and a standard FFT is computed for each color channel (Red, Green, 
and Blue) (Fig 5). The three corresponding Fourier Descriptors are computed from the 
FFT values. The final size of the vector used for classifier training is d=63x3=189 
(the first component value for each channel is used for normalization). The result of 
the training step is the model (set of support vectors) determined by the SVM based 
method.    

 
Draft in Springeronline.com 

9



Draft in Springeronline.com 

Color 
Image 

2D FFT FDR 

Model SVM 
training 

Class 

R 

G 

B 

2D FFT 

2D FFT 

FDG 

FDB 

 
Fig. 5. Training process  

 
During the decision step, which is the only one computed in real-time, the Fourier 
Descriptors are computed in the same way, and the model determined during the 
training step is used to perform the SVM prediction. The output is the image class 
(Fig 6). 
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Fig. 6. Decision process 
 
In our applications (face or object recognition for quality control by artificial 

vision), the complexity of the decision function is lower than that of the feature 
computation. Typically, we obtain around 100 support vectors, so the SVM prediction 
can be performed in 5 ms on a standard PC, whereas the FD extraction is completed 
in 30 ms. we therefore decided to implement FD computation on hardware to 
accelerate the process.  

4.2 Prototyping Platform and design methodology 

In order to implement the full HW/SW co-design, we used a prototyping platform 
developed by Calgary University and the MPEG/ISG group [26] [27]. The platform is 
based on a standard PC and a single PCMCIA FPGA-based board. This board is the 
WILDCARD PCMCIA (Xilinx Virtex II XCV3000) card from Annapolis Micro 
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Systems [28] and is plug-compatible into a laptop Cardbus slot. The WILDCARD has 
a very compact architecture with a Virtex II 3000K FPGA from Xilinx, and two 
SRAM banks, each 256 KB in size. The WILDCARD uses the 32-bit CardBus 
interface, using a dedicated chip to provide this bus support. The architecture block 
diagram is presented in Fig 7.  
Each of the two memory blocks, referred to as the right and left memory banks, is 
64Kx32-bit RAM module, with a 16-bit address bus and 32-bit data word. The FPGA 
can write and read from the right and left memories independently. The host interface 
is through a 32-bit CardBus (PCMCIA) controller that operates at a 33 MHz clock 
frequency. Data transfers to and from the PC host are performed via the control of a 
set of C program driver calls that interface with the CardBus controller which, in turn, 
interfaces with the LAD bus to send data to, and retrieve data from, the FPGA [28].  
A standard HDL–based design methodology was used. We model the algorithm using 
the VHDL hardware description language; we functionally verify the correctness of 
the algorithm in the custom architecture, and then we synthesize the architecture onto 
a set of resources to produce a circuit mapped to target the FPGA device. VHDL 
modules that come with the card are written to target a specific synthesis tool.  

The VHDL modules are easily interconnected to a PCI interface using the 
Application Programming Interface (API) provided by the WILDCARD vendor. 
These modules are hardware accelerators that can be controlled and called from the 
host with a high abstraction level. Indeed, from the host’s point of view, the 
accelerator’s calls can be considered as usual C functions. The set of hardware 
accelerators is a co-processor which provides a high level of parallelism (intrinsic 
parallelism of the FPGA, and parallelism obtained by the association of the host and 
the FPGA). Most of the platform’s IP have been developed in an image compression 
context to achieve real time performances [29] [30]. We propose to take advantage of 
the Wildcard platform capacities for our color object recognition application. 
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Fig. 7 WILDCARD Block Diagram [28]. 
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4.3 Architecture for FD implementation 

Global architecture 
The aim of our work is to achieve the hardware implementation of Fourier 
Descriptors computation according to equation (2). The processing can be split in two 
computational steps: 

- Computation of the Fourier transforms of the image
^

f f , using 2D FFT. 

- Computation of some integral expression of over circles in the frequency 
plane. 

^

f

 
The proposed architecture is shown in detail in Fig 8. It is constituted of five main 
units: Input/Output FIFO memories, 2D-FFT accelerator, Fourier Descriptors 
accelerator, a set of two temporary memories, and a controller based on a Finite State 
Machine (FSM) which controls the process. The proposed architecture has two basic 
FIFO (RAM) blocks of 4K. The FIFO_in and FIFO_out are in charge of data 
exchange between the host and the 2D FFT accelerator. These units simplify task 
scheduling and prevent asynchronism.  
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Fig 8: Data-flow architecture of the hardware accelerator 
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2D FFT computation 
 

The 2D FFT was designed to support large size images. For instance, we propose 
in this paper a core implementation for 128x128 color images. The 2D FFT is 
processed for each color channel (red, green and blue). The accelerator is based on the 
Xilinx standard Logic Core 1D FFT IP Core configured for 128 points, operating 
using 16-bit data. This FFT core implements the Cooley-Tukey algorithm, using 
pipeline and streaming I/O. This solution offers continuous data processing. The core 
is able to perform transform calculations on the current data frame, while 
simultaneously loading for the next data frame, and unloading the results of the 
previous data frame. Depending on the performance required, the architecture can 
easily be adapted. In the 1 D configuration, the design is a low cost solution in term of 
HW resources. The performance can be increased easily by adapting the IP to process 
several rows or columns in parallel or by multiplying the number of IP to process the 
three color channel simultaneously. 
The 2D FFT is separated into rows and columns, so the process is split into two steps:  

- In the first step the FFT-IP is used to compute the FFT 1D of each row of 
the input image. The results are stored in two memories for real and imaginary parts 
of the FFT (steps labeled 1 and 2 in Fig 9).  

- In the second the FFT-IP is reactivated to compute the FFT 1D of the 
column of the FFT image formed by the previously stored results (steps labeled 3 and 
4 in Fig.9). 
The final results are the real and imaginary data parts of the FFT stored in two 
separate memories (Fig 9).  
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Fig 9: Diagram block of 2D-FFT computation 
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Circular integration for FD computation 
 

The integral values to be computed according to eq. (1.2) are approximated by 
accumulating the FFT values which belong to a centered crown. Each crown is one 
pixel wide in the Fourier space, and provides one Fourier Descriptor (see Fig 10). 
Therefore, 64 FD values are obtained for a 128x128 image. The central value is used 
for normalization (performed by the host) and the other 63 values are the components 
of the feature vector used for classification. 

For each pixel of the Fourier space, the radius of the crown which it belongs to 
must be determined. In order to avoid this high-cost computation in terms of time 
processing and hardware resources, we propose that these fixed values be computed 
off-line and stored in a 128x128 ROM.  
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       5 4 4 4 5       
      5 4 3 3 3 4 5      
     5 4 3 2 2 2 3 4 5     
     5 4 3 2 1 2 3 4 5     
     5 4 3 2 2 2 3 4 5     
      5 4 3 3 3 4 5      
       5 4 4 4 5       
        5 5 5        
                  
                  

 
Fig 10: Example of considered circles in the Fourier space 

 
The architecture of the circular integration is depicted in Fig 11. The radius-ROM 
address is determined by the pixel position (row and column values). The radius value 
read in this radius-ROM is used as an address of the FD-RAM (64 words of 16 bit 
width), where FD final values are stored. The FD-RAM data output is connected to an 
adder in order to form an accumulator. The other input of the adder is the squared 
value of the FFT module. The FD-RAM content is initialized to 0 for each new 
image. The final FD values are read after the last pixel processing, and transmitted to 
the host using the FIFO_out. One accumulation is composed of four steps: 

 1- Read the radius in Radius-ROM, and the FFT values in the 2D FFT RAM, 
2- Read the previous FD value in the FD-RAM and compute the squared 
FFT module, 

 3- Add the previous FD value and the squared FFT module, 
 4- Store the resulting value in the FD-RAM. 
A control unit schedules the data flow. 
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Fig 11: Block diagram architecture for computing Fourier Descriptors  

4.4 Experimental Results 

The architecture described above was simulated and implemented targeting Xilinx 
FPGA. The hardware implementation results are shown in table 3, for one color 
channel 128x128. The working frequency is about 33 Mhz.  
The execution time of the same part of the algorithm, using the same optimizations 
(use of radius-ROM) on µP-based with Pentium 4 (2.81 GHz) is 10 ms. The execution 
time of the FPGA implementation part is approximately 0.5 ms. Taking into account 
the time required for data transfer between the host and the Wildcard, the whole 
execution time of the SW/HW process is around 1 ms. The acceleration factor is 
therefore about 10. 

 
Logic Utilization Used Available Utilization 

Number of Slices 2900 14336 20% 
Number of Slice Flip Flops 3495 28672 12% 
Number of 4 input LUTs 4072 28672 14% 
Number of bonded IOBs 68 484 14% 
Number of BRAMs 41 96 43% 
Number of MULT18X18s 14 96 15% 

Table 3: Synthesis of results of Fourier Descriptor implementation  

5. Conclusion 

An efficient FPGA based architecture for hardware acceleration of Fourier 
Descriptors has been presented in this paper. 

The classification performance of the proposed method was evaluated using 
several standard databases, and revealed that our approach can be useful in many 
applications of object recognition.  
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The prototyping platform used is based on a Wildcard, allowing an easy to use co-
processing system to be designed. The image acquisition and the final classification 
using SVM are executed in software, while the feature vector computation is 
implemented in hardware. This has allowed us to accelerate global execution time in 
order to meet real time constraints.  

The obtained acceleration is around 10 for one color channel, and can be increased 
using a pipelined model for each color channel. 

It is important to note as well that Fourier Descriptors can also be used in multiple 
Regions of Interest of larger images, or as local feature vectors, as well as in many 
algorithms based on the windowed Fourier transform. In these cases, for which the 
window size is frequently smaller than the one presented in this paper (typically 
32x32 of 16x16 windows) our architecture can easily be adapted to these smaller 
windows, and duplicated in the FPGA to improve parallelism. 

The HW/SW solution presented here may be considered as a first implementation. 
We also worked in the past on the FPGA implementation of an approximation of the 
SVM decision function [15]. Our future work will therefore address the integration of 
the whole recognition process – feature extraction and classification - on the FPGA, 
freeing the host processor for other tasks. 
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