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Abstract: Classification and object recognition is one of the most important tasks in image processing. Most applications deal with 
the classification of definite shapes, for example identifying a particular type aircraft. In these applications, compact visual 
descriptors are necessary to describe image content. Fourier descriptors are widely used in image processing to describe and classify 
object. Several techniques have proved useful moment’s invariants. In this paper, we studied Motion descriptors (MD) introduced 
recently by Gauthier et al.; combined with Zernike Moments (ZM). Experiments are conducted using three databases: COIL-100, 
which consists of 3D objects, A R faces and cellular phones database. Recognition is performed by a Support Vector Machine as 
supervised classification method. 
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INTRODUCTION 
Color and invariant object recognition is a critical 
problem in image processing. Numerous approaches are 
proposed in the literature, often based on the computation 
of invariants followed by a classification method. In this 
paper, we extend the notion of Fourier Descriptors to 
color images, and we use the descriptors as an input of a 
SVM based classifier. Considering the group of motions 
in the plane, Gauthier et al. [1] proposed a family of 
invariants, called Motion Descriptors, which are 
invariants in translation, rotations, scale and reflexions. 
H. Fonga [2] extended the Motion Descriptors, defining 
Similarity Descriptors and applying them to grey level 
images. 
Our aim is to demonstrate here empirically the ability of 
such descriptors to be used successfully in color pattern 
recognition, and also combined with another well known 
set of descriptors: the Zernike Moments [3], [4]. We 
present results obtained testing our method with standard 
databases in the object recognition community: the COIL 
databases [5], [6] which contain images from 100 
objects, A R face databases [7] (126 people) and a self 
made cellular phones database (20 phones). 

In section 2 and 3, we review the Motions 
Descriptors and Zernike Moments. Then in section 4, 
the basic theory of support vector machines is 
reviewed. The obtained experimental and numerical 
results are illustrated in section 5. Finally the 
conclusion is given in section 6. 

1. Review of Motion Descriptors 

1.1. Definition 

Motion Descriptors (MD) are defined as follows. Let f  

be a square summable function on the plane, and 
^

f  its 

Fourier transform: 

( )
2

^

( )  =  ( ) ex p |f x j x d xf ξ ξ−∫
ℝ

 (1) 

 
Where . | .  is the scalar product in2ℝ . 

 
If ( , )λ θ  are polar coordinates of the point ξ , we shall 

denote again 
^

( , )f λ θ  the Fourier transform off  at the 

point ( , )λ θ . Gauthier defined the mapping fD from 

+ℝ into +ℝ  by 

( )

2 2^

0

 = ( , )fD df
π

λ λ θ θ∫  (2) 

 
So, fD  is the feature vector which describes each image 

and will be used as an input of the supervised 
classification method. 
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1.2. Properties  

Fourier descriptors, calculated according to equation (2), 
have several properties useful for invariant object 
recognition [1]: 
Motion descriptors are motion and reflexion-invariant: 

� If M is a “Motion” such 
as ( ) ( )g x foM x= , so for any x  in 2

ℝ ,  

 
2( ) ( ),g fD Dλ λ λ= ∀ ∈ ℝ  (3) 

� If there exists a reflexions ℜ such that 

( ) ( )g x fo x= ℜ , so for any x  in 2
ℝ ,  

 
2( ) ( ),g fD Dλ λ λ= ∀ ∈ ℝ  (4) 

 
Motion descriptors are scaling-invariant: 

� if k is a real constant such as ( ) ( )g x kf x= , for 

any x  in 2
ℝ ,  
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2. Zernike Moments 
The kernel of Zernike Moments is the set of orthogonal 
Zernike polynomials defined over the polar coordinate 
space inside a unit circle. The two dimensional Zernike 
Moments of an image intensity function ( , )f r θ  are 

defined as [8] 
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where the Zernike polynomials are defined as: 
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The real-valued radial polynomials: 
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Zernike moments are rotation-invariant: the image 
rotation in spatial domain simply implies a phase shift to 
the Zernike moments. 

Mukandan et al [3], and Khotanzad [4], have 
shown that translation- invariance of Zernike moments 
can be achieved using image normalization method. In 
[8], Chee-Way chong, presents a mathematical 
framework for the derivation of translation invariants 
of radial moments defined in polar form. 

3. Review of SVM based classification  
A Support Vector Machine (SVM) is a universal learning 
machine developed by Vladimir Vapnik [9], [10]. A 
review of the basic principles follows, considering a 2-
class problem (whatever the number of classes, it can be 
reduced, by a “one-against-others” method, to a 2-class 
problem). 
The SVM performs a mapping of the input vectors 
(objects) from the input space (initial feature space) Rd 
into a high dimensional feature space Q; the mapping is 
determined by a kernel function K. It finds a linear (or 
non-linear) decision rule in the feature space Q in the 
form of an optimal separating boundary, which leaves the 
widest margin between the decision boundary and the 
input vector mapped into Q. This boundary is found by 
solving the following constrained quadratic programming 
problem: maximize 
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under the constraints 
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and 0 i Tα≤ ≤  for i=1, 2, …, n where ix dR∈ are 
the training sample set vectors, and { }i 1, 1y ∈ − +  the 
corresponding class label. T is a constant needed for non-
separable classes. (u, v)K  is an inner product in the 

feature space Q which may be defined as a kernel 
function in the input space. The condition required is that 
the kernel (u, v)K  be a symmetric function which 

satisfies the following general positive constraint:  
 
 

( ) ( ) ( )u,v g u g v du d v 0

dR

K >∫∫  (14) 

 
which is valid for all g≠0 for which  
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( )2 u  dug < ∞∫  (Mercer’s theorem). 

The choice of the kernel K(u, v) determines the structure 
of the feature space Q. A kernel that satisfies (11) may be 
presented in the form: 
 
 

( ) ( ) ( )u, v u vk k k

k

K a= Φ Φ∑  (15) 

 
where ak are positive scalars and the functions kΦ  
represent a basis in the space Q. Vapnik considered three 
types of SVMs [10]:  
Polynomial SVM:  
 

( ) ( )x, y x.y pK 1= +  (16) 

 
Radial Basis Function SVM (RBF):  
 

( )

2

2

x y

2x, yK e σ

 − −      =  (17) 

 
Two-layer neural network SVM:  
 
 

( ) ( ){ }x, y x.yK Tanh k= −Θ  (18) 

 
The kernel should be chosen a priori. Other parameters 
of the decision rule (16) are determined by calculating 
(9), i.e. the set of numerical parameters { }1

n
iα  which 

determines the support vectors and the scalar b. 
The separating plane is constructed from those input 
vectors, for which αi≠0. These vectors are called support 
vectors and reside on the boundary margin. The number 
Ns of support vectors determines the accuracy and the 
speed of the SVM. Mapping the separating plane back 
into the input space Rd, gives a separating surface which 
forms the following nonlinear decision rules:  
 
 

( ) ( )
1

C x Sgn s , x
Ns

i i i

i

y K bα
=

  = ⋅ +   
∑  (19) 

 
Where si belongs to the set of Ns support vectors defined 
in the training step. 
SVM based classifier condenses all the information 
contained in the training set relevant to classification in 
the support vectors. This reduces the size of training set 
identifying the most important points. Moreover, SVM 
are quite naturally designed to perform classification in 
high dimensional spaces [11]. 

4. Object Recognition Process and 
experimental Results 

4.1. Test Protocol  

In order to validate our approach, we performed a cross 
validation test using two public databases: the COIL-100 
[4] and the A R face color database [7] and one self made 
database of similar objects (cellular phones). 

4.1.1. Training Step 
During the training step (Fig. 1), the data flow is as 
follows: the input image is resample to 128x128 pixels, 
and a standard FFT is computed for each color channel 
(Red, Green, and Blue). The three corresponding Motion 
Descriptors are computed from the FFT values and the 
Zernike moments are computed from the 3 color 
channels. The final size of the vector used for SVM 
training is d=63x3=189 for Motion Descriptors, and 
d=14x3=42 for Zernike Moments. The result of the 
training step is the model (set of support vectors) 
determined by the SVM based method. 
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Fig. 1. Training Process 

4.1.2. Decision Step 

 

During the decision step, the Motion Descriptors or 
Zernike Moments are computed using the same way, and 
the model determined during the training step is used to 
perform the SVM prediction. The output is the image 
class (Fig. 2). 
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Fig.2. decision Process 

 
The classification error rate was evaluated using cross-
validation. The training step was performed using a 
training subset of samples B , and a test step was 
performed using a test subset of samples Γ , with 
B DΓ ∪ =  and ΒΓ ∩ = ∅  where D is the set of 

every available images in the database. For each 
database, we evaluated separately the classification error 
obtain using the Motion Descriptors, the Zernike 
Moment, and the mixing of both feature vectors. In this 
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case, the dimension of the feature space is 
d=189+42=231. 
Since we used the RBF kernel in the SVM classification 
process, we have to tune the kernel size, i.e. the value of 
σ  in the equation (14). This has been done empirically 
for each database, choosing the kernel value optσ which 

gave the minimum error rate. 

4.2. Numerical results  

4.2.1. COIL-100 database 
 
COIL-100, the Columbia Object Image Library (COIL-
100, Fig. 3) [5] is a database of colour images of 100 
different objects, where 72 images of each object were 
taken at pose intervals of 5°. The images were pre-
processed so that either the object’s with or height 
(whatever is larger) fits the image size of 128 pixels. 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Sample Objects of COIL-100 database 
 

a) Classification performance 

Table 1 presents results obtained testing our object 
recognition method with the COIL-100. Tests have been 
performed using 5-fold cross validation (58 images used 
for training, 14 images used for testing, for each 
validation step). Optimum error values are depicted in 
red. In this case, Motion Descriptors outperforms Zernike 
Moment, and the combination of both descriptors 
improve significantly the global performance of the 
system. 
Other methods testing the COIL-100 database, in the 
literature provide error rates from 12.5% to 0.1%. Testing 
is performed using different protocols [12]. 
In our global approach, the error e=0.01% corresponds to 
only 1/7200 image classified faulty. 
 
Table 1: Cross validated error rate on COIL-100 database 

 Zernike 
Moments 

Motion 
Descriptors 

Motion-Descriptors 
and Zernike 

Moments 
0.1optσ =  0.22 

% 
0.09 % 0.01 % 

 
We studied the influence of the number of image 

samples used during the training step. Results are 
depicted in Fig. 4. The faster convergence is obtained 
for the combination of both descriptors. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig.4. Influence of number of training samples of COIL 

 

b) Robustness against noise  

In order to study Zernike moments and Motion 
descriptors noise robustness, we evaluated the 
classification error obtained using a noisy database. This 
database has been created adding Gaussian noise to the 
COIL images. In order to test several noise levels, we 
created databases with different standard deviation Sd 
(0.0004<Sd<0.23). Some examples of noisy images are 
depicted in Fig. 5. 
Table 2. achieves results of our method with noisy 
databases. Tests have been done using 9-fold cross 
validation and the best set SVM parameters kernel 
obtained in the section 5.3.1 a). Results show noise has 
little influence on classification performance as much 
when we use Zernike moments or Motion descriptors. 
Nevertheless Zernike seems to be more robust to additive 
noise, while combining descriptors is not really efficient 
here. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Sample of COIL noisy object 
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Table 2: Error rate on COIL-100 noisy database 

St. Dev. 
of 

Gaussian 
noise 

Zernike 
Moments 

Motion 
Descriptors 

Motion-
Descriptors 

And 
Zernike Moments 

0.04 0.40 % 0.29 % 0.4 % 
0.08 0.29 % 0.36 % 0.54 % 
0.12 0.27 % 0.38 % 0.51 % 
0.16 0.34 % 0.40 % 0.42 % 
0.19 0.26 % 0.47 % 0.48 % 
0.23 0.43 % 0.38 % 0.61 % 

 

5.1.2 A R face database 
Face detection is a difficult problem for which a lot of 

methods have been studied [13], [14], [15], [16], [17]. 
The face database we used to validate our approach (Fig. 
6) was created by Martinez in the computer vision center 
[7]. It contains over 4.000 color images corresponding to 
126 people’s faces (70 men and 56 women). Images 
feature frontal view faces with different facial 
expressions, illumination conditions, and occlusions (sun 
glasses and scarf). Each image in the database consists of 
a 786x576 array of pixels, and each pixel is represented 
by 24 bits of RGB color. 
 

 

 

 

Fig. 6. Face samples from the A R database 
 
The third database tested with our approach is the A R 
face. For the experiments reported, images were morphed 
to a final 512x512 pixel size array. The best performance 
obtained is e=3.4%, using a 10-fold cross validation and 
Motions Descriptors. In this case, the addition of Zernike 
Moment to the Motion Descriptors does not improve 
performance, since the error is e=3.5%. However, our 
approach gives better results than in [7], where Martinez 
focuses on solving the localization error and occlusions. 
The error in this case is range to 15-5%. 
 

Table 3: Error rate on A R face database 

SVM 
RBF 
 Kernel 
 (CV 10) 

Zernike 
Moments 

Motion 
Descriptors 

Motion-
Descriptors 
 and Zernike 
Moments 

0.1optσ =  35.12% 3.4% 3.5% 
 

5.1.3 Cellular phone database 
This cellular phones (Fig. 7) database has been created in 
our laboratory in order to illustrate the ability of Motion 
Descriptors and Zernike Moments to recognize similar 
objects. The database contains thus 20 objects (phones) 
and 300 images by object. The acquisition protocol is 
similar to the COIL acquisition, since each object is put 
on a turntable in order to perform an acquisition each 1.2 
degree. 
Applied on cellular phone database, Motion Descriptors 
and Zernike Moments (and combination) give both a null 
error using cross validation. 
 

 

 

  
Fig. 7. Sample objects of the cellular phone database 

 
We also studied the influence of the number of samples 
used during the learning step. The results are reported in 
the Fig. 8. Motion Descriptors are globally more efficient 
than Zernike Moments, and one can note, as in the COIL 
case, that the combination of both descriptors allows 
converging faster, since the error e<2% is obtained when 
only 3% of available samples are used during the training 
step.  

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Learning samples (%)

er
ro

r 
(%

)

Zernike

Motion

Both

Fig.8. Influence of number of training samples of COIL 

 

5. Conclusion 
We proposed in this paper an evaluation of performance 
of Motion Descriptors compared and combined with 
Zernike Moments applied to color object recognition. 
The descriptors have been defined and their properties 
reviewed. Using standard databases of pattern 
recognition we shown that Motion Descriptors often 
outperform Zermike Moments, and that combination of 
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both descriptors allows limiting the number of samples 
used during the training step of the classification process. 
These descriptors can be used successfully in a pattern 
recognition task for which rotation, scale and translation 
invariant is important.  
We built software working in real-time using a standard 
PC architecture. During the training step, the user as to 
record a few images of the object to be recognized. The 
decision step (including resampling, Motion Descriptors 
computation and SVM prediction) is performed in 50ms 
on a Pentium IV, 1.5 GHz. Moreover, it is also possible 
to compute Zernike Moments in real time [18]. 

In future work, we intend to add a new family of 
invariants, and cooperation between local and global 
approaches will be tested for shape indexing. 
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