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Abstract — Fourier descriptors have been used successfultythe

past to grey-level images, rigid bodied object. Her we used
Motion Descriptors (MD) introduced recently by Gauthier et

al., combined with Zernike Moments (ZM), in order to perform

a recognition task in colour images. The feature ator for the

MD obtained for each object appears to be unique ahcan be
used for shape recognition. The MD, alone or combed with

ZM, are used as an input of a Support Vector Machir (SVM)

based classifier. We illustrate results on three ailable

datasets: ORL faces database, COIL-100, which comsss of 3D
objects and A R faces.

I. INTRODUCTION

Object recognition is a critical problem in
literature, often based on the computation of irards
followed by a classification method.

In this paper, we extend the notion of Fourier Dipsors
to colour images, and we use the descriptors aspan of a
SVM based classifier. Considering the group of omiin
the plane, Gauthier et al. [1] proposed a familynefriants,
called Motion Descriptors, which are invariants
translation, rotations, scale and reflexions. Hng [2]
extended the Motion Descriptors, defining Similarit
Descriptors and applying them to grey level images.

Our aim is to demonstrate theoretically and pratifiche
ability of such descriptors to be used successfullgolour
pattern recognition, and also combined with anotiell
known set of descriptors: the Zernike Moments [8], We
present results on experiments done with standatabdses
in the object recognition community: the COIL datsés [5],
[6] which contain images from 100 objects rotated &
turntable (72 images for each object, i.e. imag&sn every
5 degree). ORL and A R face databases.

In section 2 and 3, we review the Motions Descriptnd
Zernike Moments. Then in section 4, the basic theafr
support vector machines is
experimental and numerical results are illustratedection
5. Finally the conclusion is given in section 6.

II. REVIEW OF MOTION DESCRIPTORS

A. Definition
Motion Descriptors (MD) are defined as follows. Lgthe

image
processing. Numerous approaches are proposed in the

in

reviewed. The obtained

a square summable function on the plane, fnﬂs Fourier
transform:

fo

Where(. | .) is the scalar product iR?.
If (A\,0) are polar coordinates of the poigt, we shall

denote againf()\, 0) the Fourier transform ¢f at the point
(A,0) . Gauthier defined the mapping, from R, into R,
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So, D; is the feature vector which describes each image a

will be used as an input of the supervised clasatifin
method.

B. Properties

Fourier descriptors, calculated according to eguaf?),
have several properties useful for invariant objecbgnition
[1]:

Motion descriptors are motion and reflexion-invatia
= IfMis a"Motion” such agj(z) = foM (z), S0

foranyz inR?, D,(\) = D;(\),VA € R (3)

= |f there exists a reflexions ®such that
g(z) = foR(z), so for any z in R?,
Dy(A) = Ds(N), VX € R? (4)

Motion descriptors are scaling-invariant:
= if kis a real constant such gér) = kf(x), for any

¢ inR?, D,(\) = k%pf(%),VA eR’ ()



[ll. ZERNIKE MOMENTS

The kernel of Zernike moments is the set of ortmago
Zernike polynomials defined over the polar coorténspace
inside a unit circle. The two dimensional Zernikenrents of

an image intensity functiorf (r, &) are defined as [7]

1 7
Zpg = Pt lffqu(rﬁ)rdrda |r<1, (6)
™
0 —7
where the Zernike polynomials are defined as:
qu (7”7 6) = qu (T)ei'jqe (7)
The real-valued radial polynomials:
p—lql
2
_ s (p - 5)' D—28
R, > = SZ::UFD AT (8)
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Zernike moments are rotation-invariant: the imagation
in spatial domain simply implies a phase shifthe Zernike
moments.

Mukandan et al [3], and Khotanzad [4], have shotat t
translation- invariance of Zernike moments can tieieved
using image normalization method. In [7], Chee-\&hgng,
presents a mathematical framework for the derivatid
translation invariants of radial moments defined polar
form.

IV. REVIEW OF SVM CLASSIFICATION

A Support Vector Machine (SVM) is a universal léagn
machine developed by Vladimir Vapnik [8]. In 197A,
review of the basic principles follows, consideria@-class
problem (whatever the number of classes, it caredaced,
by a “one-against-others” method, to a 2-classlproh

The SVM performs a mapping of the input vector

(objects) from the input space (initial feature @d, into a

and 0 < o; < T for i=1, 2, ..., n wherex; € R;are the
training sample set vectors, and; € {—1,+1} the
corresponding class labell is a constant needed for
nonseparable classed((u,v) is an inner product in the
feature space Q which may be defined as a kernetitin in
the input space. The condition required is that kbenel
K(u,v) be a symmetric function which satisfies the

following general positive constraint:

f K(uv)gavgovdudy > 0 (11)

Ry

which is valid for allg=0 for which

fgz cw> du < oo (Mercer's theorem).

The choice of the kernd{(u, v) determines the structure
of the feature spac®. A kernel that satisfies (11) may be
presented in the form:

K(u,v) =Y a®; v, (12)
k
where a, are positive scalars and the functiors,
represent a basis in the spd@e Vapnik considered three

types of SVMs [9]:
Polynomial SVM:

K(xy)=(xy+ 1) (13)
Radial Basis Function SVM (RBF):
)
K(xy)=¢ 7 (14)
Two-layer neural network SVM:
K(x,y) = Tanh{k(xy)— 0} (15)

The kernel should be chosarpriori. Other parameters of

gthe decision rule (16) are determined by calcuip(®), i.e.

the set of numerical parametefrs; }; which determines the

high dimensional feature spaQe the mapping is determined support vectors and the scaar

by a kernel functionK. It finds a linear (or non-linear)

decision rule in the feature spaQen the form of an optimal
separating boundary, which
between the decision boundary and the input veuospped

The separating plane is constructed from those tinpu
vectors, for whichg;z0. These vectors are callesipport

leaves the widest margigectors and reside on the boundary margin. The nuniser

of support vectors determines the accuracy ancgpeed of

into Q. This boundary is found by solving the following the SVM. Mapping the separating plane back intoitipait

constrained quadratic programming problem: Maximize

n 1 n n
W(a)zzm—§EZalajy7y]K<X”XJ), (9)
i=1 i=1j=1
under the constraints
Eaﬂ/z’ =0, (10)
i=1

space Ry, gives a separating surface which forms the
following nonlinear decision rules:

Ns

Cx)> = Sgn quai K (s;x)+ b,

i=1

(16)

where s, belongs to the set &fs support vectors defined in
the training step.

SVM based classifier condenses all the information
contained in the training set relevant to clasatfan in the
support vectors. This reduces the size of trainse



identifying the most important points. Moreover, [8\are
quite naturally designed to perform classification high
dimensional spaces [10].

V. OBJECT RECOGNITION PROCESS AND
EXPERIMENTAL RESULTS

In order to validate our approach, we performedass
validation test using three distinct databases:QR. [11],

3) AR Face database

This face database (Fig. 3) was created in the atenp
vision center. It contains over 4.000 colour images
corresponding to 126 people’s faces (70 men and 56
women). Images feature frontal view faces with afight
facial expressions, illumination conditions, andclasions
(sun glasses and scarf), [12]. Each image in thabdae
consists of a 786x576 array of pixels, and eactelpix
represented by 24 bits of RGB colour.

the COIL-100 [4] and the A R face color databasy.[1
A. Databases

1) ORL database

The ORL database (Fig. 1) used in this paper isposed
of 400 grey level images of size 112x92; theredé&r@ersons
with ten images per person. The images are takdiffatent
time instances, with varying lighting conditionsacial
expressions (open/closed eyes, smiling/no-smilinghd
facial details (glasses/no glasses). All the subjace in up-
right, frontal position (with tolerance for some sgo
variation)

2 e
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Fig. 3. Face samples from the A R database

-

B. Test protocol

1) Training step

During the training step (Fig. 4), the data flow as
follows: the input image is resample to 128x128&fsxand a
standard FFT is computed for each color channeld(Re
Green, and Blue). The three corresponding Motion
Descriptors are computed from the FFT values ara th
Zernike moments are computed from the 3 color chksnn
The final size of the vector used for SVM trainitig
d=63x3=189 for Motion Descriptors, and d=14x3=42 fo
Zernike Moments. The result of the training stefhes model
(set of support vectors) determined by the SVM base

Fig. 1. Face samples from the ORL database

2) COIL-100 database

COIL-100, the Columbia Object Image Library (COIL- method.
100, Fig. 2) [5] is a database of colour images160D
different objects, where 72 images of each objemrewaken DFFTL '\Z",\EA): —
at pose intervals of 5°. The images were pre-psBIESO
that either the object’s with or height (whate\etarger) fits Color 2DFFT|_,| MDg | |
the image size of 128 pixels. INEER 2l
2DFFT| | MDg | |
ZMg
Class N SVM Model
training

Fig. 4. Training process

2) Decision step

During the decision step, the Motion Descriptors or
Zernike Moments are computed using the same waiytren
model determined during the training step is usegerform
the SVM prediction. The output is the image cldsg.(5).

Fig. 2. Several objects from COIL-100 database



2D FFT MDr Table 1: Error rate on ORL database
—
% = VD SVM Zernike Motion Motion-
In?a%re —>{ 2DFFT | Kernel moments descriptors | Descriptors
RBF and Zernike
B | L[ 2DFFT| | MDg Moments
i c=01] 25% 9.5% 4.25%
A 4
Model SVM N Class
prediction

2) COIL-100 database

Table 2 achieve the result obtained testing ouredabj
recognition method with the COIL-100. Tests haverbe
The classification error rate was obtained usingerafold ~done using 2-fold cross validation and 5-fold cross
based Cross-validation. The training step was pesxéd Validation. Optimum error values are depicted id. rehese
using a training subset of samplés, and a test step was two experiments illustrate the fact that increadimg number
performed using a test subset of samplés with Of sample images during the training step improtes
FTUB=D andI'N B = & whereD is the set of every Pperformance from e=1% to e=0.01%.
available images in the database. For each database
evaluated separately the classification error abtsing the
Motion Descriptors, the Zernike Moment, and the ingxof

Fig. 5. Decision process

Table 2: Error rate on COIL-100 database

both feature vectors. In this case, the dimensfahe space SVM Motion-

is d=189+42=231. Kernel Zernike Motion Descriptors

Since we used the RBF kernel in the SVM classificat | RBF Moments | Descriptors ;‘\‘A”d %em'ke

process, we have to choose the kernel size, ieevatue of | (CV/ o) orments

o in the equation (14). This has been done empiyidar 2/0.1 1.89 % 38.48 % 16.47 %

each database, choosing the kernel value which gaewe 2/1 0.78 % 1541 % 3.40 %

minimum error rate. 2/10 1.89 % 3.87 % 1.00 %
2/100 23.33 % 1.69 % 3.10 %

C. Numerical Results 5/1 0.22 % 0.09 % 0.01 %

1) ORL database

Published results in the literature range from 716%9%
error rate [13], [12]. The protocol used for leagiand
testing is different from one paper to another. [1d], In our global approach, the error e=0.01% corredpdn
Hjelmas reported a classification error rate e=18itg the only 1/7200 image classified faulty.
ORL dataset and feature vector consisting of Gabor
coefficients. In [15], the PCA based method [18)A-based 3) AR Face database
method [17], and a nearest neigbor-based methodewhe The third database tested with our approach isAthie
tested for comparisons. With 10 images of eachestilipr  face. For the experiments reported, images wergnear to
training, the error rate is 6.25% with LDA-basedthoel and a final 512x512 pixel size array. The best perfaroea
the best performance is an error of 2.1% with NNedoh obtained is e=2.35%, using a 10-fold cross valaatand
method. Motions Descriptors. In this case, the additionZefrnike

In [18], a hidden Markov model (HMM) based approéch Moment to the Motion Descriptors does not improve
used, and the best model resulted in a 13% erne. raperformance, since the error is e=2.6%. Howeven ou
Lawrence et al [19] takes the convolutional neuretwork  approach gives better results than in [12], whemtiez
approach for the classification of ORL database, the best focuses on solving the localization error and cgicns. The
error is 3.83%. error in this case is range to 15-5%.

We performed experiments on the ORL database uing
Zernike moments and motion descriptors. The result
shown in table 1.

Other methods testing the COIL-100 database, in the
literature provide error rates from 12.5% to 0.IPésting is
performed using different protocols [20].

Table 3: Error rate on A R face database

Experimental results show that the performance wf o SVM Zernike Motion Motion-
approach is comparable and sometimes better thakl ldivi Kernel RBE | moments descriptors | Descriptors and
LDA based methods, and that the Motion Descripamic the Zernike
Zermike Moment are complementary, since the uskottfi Moments
feature vectors allows dividing the error by twoovrever, o =01 35.12% 2.35% 2.6%

best results will be obtained with colour databases
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