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ABSTRACT. In this paper, we describe a general method using the abstract
non-Abelian Fourier transform to construct "rich" invariants of group actions
on functional spaces.

In fact, this method is inspired of a classical method from image analysis:
the method of Fourier-Descriptors, for discrimination among "contours" of
objects. This is the case of the Abelian circle group, but the method can be
extended to general non-Abelian cases.

Here, we improve on some of our previous developments on this subject,
in particular in the case of compact groups and motion groups. The last
point (motion groups) is in the perspective of invariant image analysis. But
our method can be applied to many practical problems of discrimination, or
detection, or recognition.

1. INTRODUCTION

In the paper, we consider the very general problem of finding "rich" invariants
of the action of a (locally compact) group G on functions over G or over one of its
homogeneous spaces. We start from a very old idea coming from a classical engi-
neer’s technique for invariant objects recognition: the Fourier-descriptors method.
Invariant objects recognition is a critical problem in image processing. To solve it,
numerous approaches have been proposed in the literature, often based on the com-
putation of invariants followed by a classification method. Considering the group
of motions of the plane, Gauthier and al. [9], [12], proposed a family of invariants,
called Motion Descriptors, which are invariants in translation, rotations, scale and
reflections. H. Fonga [7] applied them to grey level images. A recent survey on this
question can be found in [20]. Another interesting paper closely connected to this
work is [16].

In this paper, we develop and we give final results of a general theory of "Fourier-
Descriptors". The paper contains really new results that justify the choice of these
"Generalized Fourier Descriptors”.

The paper deals mostly with two cases: first, the case of compact groups, and
second, the case of certain "Motion groups", for the purpose of image analysis.

In another forthcoming paper [18], we show application of our results to several
problems of pattern recognition (in particular, human-face recognition). In this
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last paper, a main point is that we apply 2D-invariant Motion-Descriptors for 3D
recognition. The justification is clear: in practice we get a number of 2D images
of the same object under several points of view. The Motion Descriptors being
motion-invariants, we need a single picture for each point of view, independently of
the position of the object. Also, in this paper, we use the invariants in the context
of a classifier of Support-Vector-Machine type [21].

However, in another practical context (3D data for instance) we could apply
our methodology to the action of the group SO5 x R? of 3D-motions. Generalized
Motion Descriptors for this group action can be computed easily using our theory.

We obtained a long time ago the results presented here in the case of compact
groups. But proofs of them were never published. We give these proofs here (The-
orem 5). Our final (original) result (in the case of the discrete 2-D motion groups
acting on the plane) is stated and proved in Theorem 8.

Along the paper, we use the terminologies "Fourier Descriptors", or "General-
ized Fourier Descriptors" for general groups. When we want to focus on pattern
recognition and motion groups, we use the terminology "Motion Descriptors".

1.1. Review of known Motion Descriptors for plane images.

1.1.1. Definition of First- Type-Motion-Descriptors. First-Type-Motion-Descriptors
(1‘9t1\/£D) are defined as follows. Let f be a square summable function on the plane,
and f its Fourier transform!':

(1.1) FO =] f@)e @Oy
RZ

If (A, 0) are polar coordinates of the point &, we shall denote again by f(\, ) the
Fourier transform of f at the point (A, ). We define ([12], [9]) the mapping:

I{(f) : RJr—)RJm
ro— L),
by
27
(1.2 5= [ o] a

Here I7 is the feature vector which describes each image f and will be used as
an input of our first supervised classification method.

1.1.2. Properties. Fourier descriptors I] calculated according to equation (1.2),
have several elementary properties crucial for invariant object recognition [9]:
Motion-Descriptors are motion and reflection-invariant:

o If M is a “Motion” such as g = f o M,
(1.3) II(f) = Ii(9),Vr e R"
o If there exists a reflections R such that g = f o R,

NIl along the paper, we omit the important detail that certain formulas make sense in fact
on L' NIL? spaces only, but prolong in a unique way to L2 spaces. It is the case here.
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(1.4) I(f) = I} (g),¥r € R*
e Motion descriptors are scaling-covariant:
If k is a real constant such as g(x) = f(kz) for all z € R?,

(15) Ii(g) = 7 TF (), ¥r € R".

The proof is obvious and left to the reader.

1.1.3. Definition of Second-Type "Motion Descriptors” . Second-Type "Motion-

Descriptors" (284 MD) are a second family of invariants (containing the first one)
which is "closer to completeness" and completely natural as explained in the second
part of this paper. Originally they were defined in [11] and [7]. They are denoted
by I¢1€2 and they are defined by:

(1.6) ﬁ“ﬁ)z(/ﬂ%@ﬁfﬁx
F(Ro(€1)) F(Ro(£,))d8,
51)52 S RQ’

Here Rg(€) denotes the rotation of angle # of the vector ¢ € R?, ie. Rp(z,y) =
(xcosf —ysinf, zsin b + y cos ).

Remark 1. 1. It is clear that 152 is invariant with respect to motions.
2. It is also clear that the set of invariants 1152 is completely determined by
the smaller set obtained by taking &, of the form (0,r1), r1 € R*.

Hence an alternative definition of I¢1€2 is given by:

(1.7) I Ay = / [F(—A1 sin(0 + w) — Agsin,
S1
A1 cos(6 4+ w) + Ag cos b))
F(—)\l sin(f 4+ w), A1 cos(f + w))
F(—Aasind, Az cos(6))]d0,
where A1, A2 € RT and w € [0, 27].

1.1.4. Properties. The following properties are elementary and left to the reader to

check:

e For a real-valued f, I¢:¢2(f) is a real number.
e The quantity I¢1-€2(f) is symmetric in &;,&,, i.e.:

(1.8) TP (M, A2) = 17 (M, A2) = I (A2, 1)
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2. THEORY OF GENERALIZED FOURIER DESCRIPTORS

2.1. Organization. -Section 2.2:

We first recall the beginning of the story of Fourier-Descriptors, namely descrip-
tors for "exterior-contours" of objects. They give rise to a set of complete invariants
of exterior-contours that are denoted here by P, and R, ,,. The invariant P, is a
spectral density, while R,, ,, is homogeneous to a phase.

We recall the definition of general Fourier transforms on topological groups with
their main property.

For the purpose of generalization, we change a bit the class of phase-invariants,
and we replace it by the other phase invariants Rn,m, more or less equivalent.
At this step, we are able to find a complete and natural generalization of the
invariants, in terms of Fourier-transforms of functions (images) on any unimodular
locally-compact group G.

We call these two families of invariants the first and second-Type "Fourier De-
scriptors", (or Motion-descriptors when G is a group of motions). Again, first-
type invariants are homogeneous to spectral-densities, and second-type are "phase-
invariants".

-Section 2.3:

We make the explicit computation of the Motion-descriptors (first and second-
type) in the case of the group Ms of motions (rotations+translations) of the Euclid-
ian plane R?. To do this, we consider images (i.e. functions on the plane) as func-
tions on the group by considering these functions as independent of the rotation
angle. We call this "forgetting" operation the "trivial lift" (of an image on the plane
to an image on My).

-Section 3:

We show that, in the case of any compact group G, our first and second-Type
Fourier-Descriptors are weakly-complete (i.e. They separate the functions on a very
big ("residual") subset of the set of images over ). The case of "exterior-contours"
of objects is just the special case of the compact "circle" group C.

To do this, we need the Tannaka-Krein theory, and we present it under the form
of Chu-Theory, which is a generalization that we need later.

-Section 4 is devoted to the case of the Motion-Descriptors in the case of the
groups M y (i.e. the groups of motions with discrete rotations of elementary angle
%”), for N an odd integer. This is the hardest part of our work. We compute
Motion-Descriptors in this case, and we conclude to their weak-completeness, using
deeply the theory of Moore-groups, and the Chu-Duality.

2.2. Preliminaries. The Fourier-Descriptors method is a very old method used
for pattern analysis. The oldest reference we were able to find is [17]. A recent
one is [20]. One of the authors and his co-workers have several contributions in the
area ([9], [11], [7], [12]). Basically, the method uses the good properties of standard
Fourier series with respect to translations. For the sake of completeness, let us recall
this basic old naive idea, that has been used successfully several times for pattern
recognition. For details, see for instance [17].

The method applies to the problem of discrimination of 2D-patterns by their
exterior contour. Let the exterior contour be well defined, and regular enough
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(piecewise smooth, say). Assume that it is represented as a closed curve, arclength
parametrized from some initial point §y on the curve and denoted by s(f). By
construction, the function s(#) is obviously invariant under 2D translation of the
pattern. Let now §, denote the Fourier series of the periodic function s(6). The
only arbitrary object that makes the function s non-invariant under motions (trans-
lations plus rotations) of the pattern, is the choice of the initial point 6. As it is
well known, a translation of 6y by a, 8y := a + 0y, changes 5, for €**"3,, where
i = y/—1. (Here, the total arclength is normalized to 27). Set 8, = p,e?n. Let
us define the "ratios of phases" R, ,, = % — % Then, it is easy to check that
the "discrete power spectral densities" Pn = |5,|? and the "ratios of phases" Ry
form a complete set of invariants of exterior contours, under motions of the

plane. They are also homothetic-invariants as soon as the arclength is normalized.

This result is extremely efficient for shape discrimination, it has been used an
incredible number of times in many areas, and it is very robust and physically
interesting for several reasons (in particular the fact that the P, are just discrete
"power spectral densities", and that both P, and R, ., can be computed very
quickly using FFT algorithms). Also, the extraction of the "exterior-contour" is
more or less a standard procedure in image processing.

The main default of the method is that it doesn’t take any account of the
"texture" of the pattern: two objects with similar exterior contours have similar
"Fourier-Descriptors" P, and Ry, y,.

As soon as one knows a bit about abstract harmonic analysis, one immediately
thinks about possible abstract generalizations of this method. The first paper that
we know in which this idea of "abstract generalization" of the method appears is
the paper [4]. One of the authors worked on the subject, with several co-workers
([9], [11], [7], [12]). In particular, there is a lot of very interesting results in the
theses [11] and [7]. Unfortunately, these results being very incomplete, they were
never completely published. We would like here to give a series of more or less final
result, not yet completely satisfactory, but very interesting and convincing.

2.2.1. First preliminary: The Fourier Transform on locally compact unimodular
groups. Classical Fourier descriptors for exterior contours will just correspond to
the case of the "circle" group, as the reader can check, i.e. the group of rotations
e'? of the complex plane.

By a famous theorem of Weil, a locally compact group possesses a (almost
unique) Haar-measure ([24]), i.e. a measure which is invariant under (left or right)
translations. For instance the Haar measure of the circle group is df since d(6+a) =
df. A group is said unimodular if its left and right Haar measures can be taken equal
(that is, the Haar measure associated with left or right translations). An abelian
group is obviously automatically unimodular. A less obvious result is that a compact
group is automatically unimodular.

The most pertinent examples for pattern recognition are of course the following;:
1. The circle group C.
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2. The group of motions of the plane Ms. It is the group of rotations and trans-
lations (6, z,y) of the plane. As one can check, the product law on My is

(2-1) (01,x1,y1)-(92,x2,y2) =
(01 + 02, cos(01)x2 — sin(61)y2 + 1, sin(01)z2 + cos(61)y2 + y1).

It represents the geometric composition of two motions. The main difference with
the circle group is that it is not Abelian (commutative). This expresses the fact that
rotations and translations of the plane do not commute. However, it is unimodular:
the measure dfdzdy is left and right invariant, hence it is the Haar measure.

3. The group of y—homotheties and x—translations of the upper two dimensional
half plane: (y1,21).(y2, ©2) = (y1y2, 1+x2). Here, the y}s are positive real numbers.
Left and right Haar measure is dw% since dw% =d(z+a) d(bbf).

This abelian group is related to the classical Fourier-Mellin transform. A similar
group of interest is the (abelian) group of #-rotations and A homotheties of the
complex or two dimensional plane: (01, A1).(02,A2) = (01 + 02, A1 \2). Here again,
the \;’s are positive real numbers but the ;’s belong to the circle group. Of course,
if one takes an image centered around it’s gravity center, then, the effect of trans-
lations is eliminated, and it remains only the action of rotations and homotheties.
Applying the theory developed in the second part of this paper to the case of this
group leads to complete invariants with respect to motions and homotheties. This
is related with the nice work of [10].

Unfortunately, in this case, the computation of all the invariants is based upon
a preliminary estimation of the gravity center of the image. Hence, the invariants
are simultaneously very sensitive to this preliminary estimation.

4. The group of translations, rotations and homotheties of the 2D plane itself (we
don’t write the multiplication but it is obvious) is unfortunately not unimodular.
Hence the theory in this Section does not apply. It is why one has to go back to
the previous group.

5. The group SO3 of rotations of R3. It is related to the human biological mech-
anisms of pattern recognition (see the paper [4]).

6. Certain rather unusual groups play a fundamental role in our theory below:
the groups My n of motions, the rotation component of which is an integer multiple
of QW” They are subgroups of Ms, and if N is large, M> y could be reasonably
called the "group of translations and sufficiently small rotations". In some precise
mathematical sense, My is the limit when IV tends to infinity of the groups M .

For standard Fourier series and Fourier transforms, there are several general
ingredients. Fourier series correspond to the circle group, Fourier transforms to the
R (or more generally RP) group. In both cases, we have the formulas:

(2.2) 5, = / 5(6) e~ df

G
f(x) e” da.
G

~

—~
>

N~—
I

Formally, in these two formulas appear an integration over the group G with
respect to the Haar measure (respectively df, dx) of the function (respectively s, f)
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times (the inverse of) the "mysterious" term e (resp. e**). This term is the
"character" term. It has to be interpreted as follows: For each n (resp. A), the map
C—C, z — ™z (resp. the map z — €"*?2) is a unitary map (i.e. preserving
the norm over C), and the map 6 — € (resp. © — €"**) is a continuous® group-
homomorphism to the group of unitary linear transformations of C. For a general
topological group G, such a mapping is called a "character" of G.

The main basic result is the Pontryagin’s duality theorem, that claims the fol-
lowing:

Theorem 1. (Pontryagin’s duality Theorem) The set of characters of an Abelian
locally-compact group G is a locally-compact abelian group (under natural multi-
plication of characters), denoted by G, and called the dual group of G. The dual
group (G*)" of G~ is isomorphic to G.

Then, the Fourier transform over G is defined like that: it is a mapping from
L2(G,dg) (space of square integrable functions over G, with respect to the Haar
measure dg), to the space L?(G , dg), where dg is the Haar measure over G :

(2.3) fo= 1
f@) = /G £(9)x; (g™ )dg.

Here, § € G~ and X;(g) is the value of the character x; on the element g € G.

As soon as one knows that the dual group of R is R itself, and the dual group of
the circle group is the discrete additive group Z of integer numbers, it is clear that
Formulas 2.2 are particular cases of Formula 2.3.

It happens that there is a generalization of the usual Plancherel’s Theorem:
The Fourier Transform? is an isometry from L2(G,dg) to L?(G ,dg). The general
form of the inversion formula follows:

(2.4) f(g) = /G F(8)x;(9)dg.

In our cases (R,C), this gives of course the usual formulas.

In the case of nonabelian groups, the generalization starts to be less straightfor-
ward. To define a reasonable Fourier transform, one cannot consider only characters
(this is not enough for a good theory, leading to Plancherel’s Theorem). One has
to consider more general objects than characters, namely, unitary irreducible rep-
resentations of G. A (continuous) unitary representation of G consists of replacing
C by a general complex Hilbert! space H, and the characters Xz by unitary lin-
ear operators x;(g) : H — H, such that the mapping g — x;(g) is a continuous®

2Along the paper, the topology over unitary operators on a Hilbert or Euclidian space is not
the normic, but the stong topology.

3Precisely, Haar measures can be normalized so that Fourier transform is isometric.

41 the paper, all Hilbert spaces are assumed separable.

SFor the strong topology of the unitary group U(H).



8 JEAN-PAUL GAUTHIER, FETHI SMACH, CEDRIC LEMAITRE, JOHEL MITERAN,

homomorphism. Irreducible means that there is no nontrivial closed subspace of
H which is invariant under all the operators x;(g), g € G. Clearly, characters are
very special cases of continuous unitary irreducible representations. The main fact
is that, for locally compact nonabelian groups, to get Plancherel’s formula, it is
enough to replace characters by these representations.

Definition 1. Two representations x, xo of G, with respective underlaying Hilbert
spaces Hy, Hy are said equivalent if there is a linear invertible operator A : Hy —
Hay, such that, for all g € G :

(2.5) X2(g9) o A= Aox(g).

More generally, a linear operator A, eventually noninvertible, meeting condition
2.5, 1s called an intertwining operator between the representations x, Xa-

The set of equivalence classes of unitary irreducible representations of G is called
the dual set of G, and is denoted by G

One of the main differences with the abelian case is that G~ has in general no
group structure. However, in this very general setting, Plancherel’s Theorem holds:

Theorem 2. Let G be a locally compact unimodular, type 1 group® with Haar mea-
sure dg. Let G be the dual of G. There is a measure over G (called the Plancherel’s
measure, and denoted by dg), such that, if we define the Fourier transform over G
as the mapping:

(2.6) L*(G,dg) — L*(G ,dj),
- f
f@) = /G £(9)x5(9~")dg,

then, f(g) is a Hilbert-Schmidt operator over the underlaying space Hy and the
Fourier transform is an isometry.
As a consequence, the following inverse formula holds:

(2.7) f(z) = /G Trace(f(@)xy(9))dd.

More generally, if x is a unitary representation of G -not necessarily irre-
ducible- one can define the Fourier transform f(x) by the same formula 2.6.

All this could look rather complicated. In fact, it is not at all, and we shall
immediately make it explicit in the case of main interest for our applications to
pattern recognition, namely the group of motions Ms.

In the following, for the group My, (and later on Ms x), we take up the notations
below:

6a locally compact group has typel if all its unitary representations admit an irreducible
desintegration. All groups under consideration in this paper are type 1.
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Notation 1. Elements of the group are denoted indifferently by g = (0,x,y) =
(0, X), where X = (z,y) € R®. The usual scalar product over R? is denoted by
< .,. >peor simply < .,.> if no confusion is possible. Then, the product over My
(resp. Ma n writes (0,X).(a,Y) = (0 + a, RgY + X)), where Ry is the rotation of
angle 6.

Example 1. Group My of motions of the plane.

-In that case, the unitary irreducible representations fall in two classes: 1. char-
acters (one dimensional Hilbert space of the representation), 2. The other irre-
ducible representations have infinite dimensional underlaying Hilbert space H =
IL?(C,df) where C is the circle group Z/2rZ, and df is the Lebesgue measure over
C. These representations are parametrized by any ray R from the origin in R?,
R = {aV, V some fived nonzero vector in R, o a real number, a > 0}. Forr € R
(the ray), the representation X, expresses as follows, for ¢(.) € H:

(2.8) [x-(0, X).0)(u) = <" x> p(u 4 6).

The Plancherel’s measure has support the second class of representations, and is
just the Lebesgue measure over the ray R.

It is easily computed that the Fourier transform of f € L? (My,Haar) writes, with
X = (z,y):

(29) forelw = [ [ [ fozpe i
Mo
x(u — 0)dfdxdy.

Remark 2. Working a bit with the inverse formula 2.7 shows easily that this
Fourier-transform on M, is closely related with the usual Fourier-Bessel transform.
Another way to see this is to take for ¢ an element of the orthonormal basis of
H, {e™ . n € Z}. Withr = (0,a), if we take f as a function of (z,y) only, and
if £ = Acos(w),y = Asin(w), one obtains after very elementary computations that
Formula 2.9 can be rewritten as:

(2.10) (7)o () = imein / [ )T, ()i

where J,, is the n'" Bessel function. This is the usual formula for the Fourier-
Bessel transform.

The main property of the general Fourier-transform that we will use in
the paper concerns obviously its behavior with respect to translations of the group.
Let f € L?(G,dg) and set f.(g) = f(ag). Due to the invariance of the Haar measure
w.r.t. translations of G, we get the crucial generalization of a well known formula:

(2.11) £(@) oxy(a) = ful@)-
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2.2.2. Second preliminary: general definition of the Generalized Fourier Descrip-
tors, from those over the circle group . In the case of exterior contours of 2D
patterns, the group under consideration is the circle group C. The set of invariants
P, Ry, n has first to be replaced by the (almost equivalent) set of invariants,
P, Rmm,, where the new "phase invariants" Rmm, are defined by:

(2.12) R = 8n8mBntm.

The first 3 lemmas (9, 10, 11) of Appendix 5 justify this definition: at least on a
residual subset of .?(C), these sets of invariants are equivalent. This is enough for
our practical purposes.

Remark 3. 1. There is a counterexample in [12] showing that the second set of
invariants is weaker (does not discriminate among all functions).

But in practice, discriminating over a very big dense subset of functions is
enough.

2. For the purpose of a generalization to more complicated situations, (and
general in the category of locally compact groups), it is not reasonable to expect that
a small simple set of invariants will discriminate among all the orbits of the action
of a very small group on a large space.

3. Nevertheless, in the case of the additive groups R", these second invariants
discriminate completely. This is shown in [11].

4. For complete invariants over L° (G ) in the general abelian case, general-
izing those, see [12], [11], [7].

Now, an important fact has to be pointed out. There is a natural interpretation
and generalization of the "phase-invariants" Rm,n in terms of representations.

We are given an arbitrary unimodular group G, with Haar measure dg. We define
the Fourier transform f of f, as the map from the set of (equivalence classes of)
unitary irreducible representations of G, defined by formula 2.6.

Let us state now a crucial definition, and a crucial theorem.

Definition 2. The following sets Iy, I>, are called respectively the first and second-
Fourier-Descriptors (or Motion-Descriptors) of a map f € L*?(G). For §,41,92 €
G,

(2.13) K =7
B-(f) = f@)
where f(§)* denotes the adjoint of f(§

and where §;®g» denotes the (equivalence class of) (Kronecker) Hilbert tensor
product of the representations §; and gz, and f(§1)®f(j2) is the Hilbert tensor
product of the Hilbert-Schmidt operators f(§;) and f(g2).

Then, clearly, in the particular case of the circle group, these formulas coin-

cide with those defining P,,, R, .

Theorem 3. A (grey-level) image on G is a compactly supported real nonzero
function over G, with positive values (the grey levels).

Then, for images f, I1(f) is determined by I2(f) (by abuse, we write I(f) C
I(f)) and I (f), I2(f) are invariant under translations of f by elements of G.
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Proof. That I(f) is determined by I5(f) comes from the fact that, f being an im-
age, taking for gs the trivial character co of G, we get that Ig1’§2(f) = ow(f)If“(f)7
where the "mean value" of f,av(f) = [ f(g)dg > 0, av(f) = (I5)'/3. That
I9(f)) = I2(f) (where f,(9) = f(a )7 the translate of f by a) comes from the clas-
sical property 2.11 of Fourier transforms. That I3:92(f) = I19"92(f,), comes from
the other trivial fact, just a consequence of the definition,

Fa(31890) = f(5:1802) o (X4, (@)®xg, (),

and from the unitarity of the representations. O

Our purpose in the remaining of the paper is to compute and to investigate
about the completeness (at least on a big subset of L?(G)) and the pertinence of
these invariants, in the case of a general GG, and specially in the case of our motion
groups My and Mo n.

2.3. The generalized Fourier Descriptors for the motion group Ms. Here,
using the results stated in Example 1, let us compute the generalized Fourier De-
scriptors, and observe that these invariants coincide with the invariants un-
der consideration in the first part of this paper.

The following series of formulas comes from straightforward computations, using
the results and notations stated in Example 1.

For 71,73 € R (the ray), the tensor product x,., ®x,,, (denoted also by x,. &,,) of
the representations x,., and x,., can be written, for ¢ € L?(C x C)~ L?(C)®L?(C),

(2.14) [rioor, (0, X)@)(ur,up) = ' SHomamitfionred>
xp(uy + 0, us + 0).

Therefore, we have the following expression for the adjoint operator:

(2.15) (Xrioors (0, X) @) (ur, un) = o7 Sfiommaratfiomura X>
xp(u; —0,us — 0).

A very important point: we consider functions fon the group of motions that
are functions of X = (z,y) only (they do not depend on 6, i.e. they are the "trivial"
lifts on the group M of functions on the plane R?). For the Fourier transform, we
get, with ¢ € L2(C), r € R,

(2.16) [/ (r)el(w)

/ng ur)e(u — 0)do

= < ¢(0), f(R_gr) >12(C,d6)s

in which f(V)) denotes as before the usual Fourier transform over (the Abelian
group) R? :

(2.17) Fv) = /R X)X drdy,
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The adjoint of the Fourier transform is given by:

(2.18) [F(r)*el(u) = F(R_ur) <, 1>12(c),
where 1 is the constant function over C, with value 1.
It follows that:

(2.19) [f(rl)*®f(r2)*90](u17u2) = R_,m1) Ruﬂ’z)

// ©(a,b)dadb
CxC

The final formula we need, to compute the Generalized-Fourier-Descriptors, fol-
lows easily from Formula 2.14:

(220) fA(T’1®T’2)§0(U,17 U'Q) = / fN(RQ—uzrl + RG—ul 7"2)
C
xp(up — 6, us — 0)do

Using all these formulas, it is not hard to get the following formulas, for the
Type-1 and Type-2 Generalized-Fourier-Descriptors:

(2.21) T ()¢l () = /C F(Ror) P < 0,1 5120,

L5 ()¢l (ur,u) = /C F(Ro(1 + 7)) F(Ro1)

F(Ror)do / /C O@(a,b)dadb,

Wlth’fl = FZ,,_LI.’I}'7 12172.

Clearly, these formulas are completely determined by the invariants used in the
first part of the paper:

(2.22) L(f) = /C F(Ror)d0, 7 € R,

§ote(f) = /C F(Ro(€, + €2))F(Rot1) F(Rot ),
for £,,6, € R2,

We finish this section with two very important remarks:

Remark 4. The Generalized-Fourier-Descriptors are real quantities (This is not
an obvious fact for the second type invariants, but it is easily checked).

Remark 5. Let us define a one color (say grey-level) image f as a real compactly
supported function over the plane R?, with support in a fived compact region K of
the plane (the "screen"). Then, the set of images is just L° (K )C L*(R?). As it has
been noticed in [7], if we set f° (z,y) = f(—x,y), The Fourier descriptors of f and
f" are identical. As a consequence:
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-The Generalized Fourier Descriptors are not complete,

-They are not even weakly complete, in the sense that they do not discriminate in
restriction to any residual subset of L? (K ): no subset containing either f or f (in
the exclusive sense) can be residual.

The purpose of the next sections of this paper is twofold:

1. We want to show that, nevertheless, the Generalized-Fourier-Descriptors are
very natural, and not far being weakly complete.,

2. We want to exhibit a bigger set of invariants, which contains the (two types
of) Generalized-Fourier-Descriptors, and which is actually weakly complete.

3. THE CASE OF COMPACT (NON-ABELIAN) GROUPS

This is the most beautiful part of the theory, showing in a very convincing way
that the formulas 2.13 are really pertinent: in the compact case, (including the
classical Abelian case of exterior contours), the Generalized Fourier Descriptors are
weakly complete. This is due to the beautiful old Tannaka-Krein duality theory.
(See [14], [15]).

3.1. Chu and Tannaka categories, Chu and Tannaka dualities. Tannaka
Theory is the generalization to compact groups of Pontriaguin’s duality theory.

The following facts are standard: The dual of a compact group is a discrete
set, and all its unitary irreducible representations are finite dimensional.

The main lines of Tannaka theory is like that: we are given a separable compact
group G.

1. There is the notion of a Tannaka category 7Z¢, that describes the structure of
the set of finite dimensional unitary representations of G;

2. There is the notion of a quasi representation Q of a Tannaka category 7g;

3. The set rep(G)  of quasi representations of the Tannaka category 7¢ has the
structure of a topological group;

4. The groups rep(G) and G are naturally isomorphic. (Tannaka duality).

This scheme completely generalizes the scheme of Pontryagin’s duality to the
case of compact groups.

In fact, Tannaka duality theory is just a particular case of Chu duality, which will
be the crucial form of duality we need for our practical purposes. Hence, let
us introduce precisely Chu duality ([14], [5]) that we will need later, and Tannaka
duality will just be the particular case of compact groups.

Let temporarily G be an arbitrary topological group.

For all n € N the set rep,(G) denotes the set of continuous unitary repre-
sentations of G over C". rep,(G) is endowed with the following topology: a ba-
sis of open neighborhoods of T' € rep,(G) for this topology is given by the sets
W(K,T,e),e >0, and K C G, a compact subset,

W(K,T,e) = {7 € repa(G) | [[T(g) = 7(9)l| <&, Yg € K,

where the norm of operators is the usual Hilbert-Schmidt norm. If G is locally
compact, so is rep,, (G).
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Definition 3. The Chu-Category of G is the category m(G), the objects of which
are the finite dimensional unitary representations of G, and the morphisms are the
intertwining operators.

Definition 4. A quasi-representation of the category w(G) is a function Q over
ob(m(QG)) such that Q(x) belongs to U(H,,), the unitary group over the underlaying
space H, of the representation x, with the following properties:

0. Q commutes with Hilbert direct-sum: Q(x1 ® x2) = Q(x1) ® Q(x2)

1. Q commutes with the Hilbert tensor product: Q(x;®x2) = Q(x1)®Q(x2),

2. Q) commutes with the equivalence operators: for an equivalence A between x,
and X2 Ao Q(Xl) = Q(XZ) o Aa

3. the mappings, rep,(G) — U(C"), x — Q(x) are continuous.

The set of quasi-representations of the category w(G) is denoted by rep(G)

There are "natural" quasi representations of G : it is clear that, for each g € G,
the mapping Q4(x) = x(g) defines a quasi-representation of m(G).

Remark 6. rep(G) is a group with the multiplication Q1.Q2(x) = Q1(x)-Q2(x).
The neutral element is E, with E(x) = Q.(x) = x(e), for e the neutral of G.

There is a topology over rep(G)  such that it becomes a topological group. A
fundamental system of neighborhoods of E is given by the sets W (K, Ly K;lw e),
e >0 and K, is compact in rep,, (G), with W(K,, ,....K,,.¢) = {Q € rep(G) |
1Q(x) — EQIII <&, Vx € UK, }.

The first main result is that, as soon as G is locally compact, the mapping
Q:G —rep(G) , g — £y is a continuous homomorphism.

Definition 5. A locally compact G has the duality property if Q) is a topological
group isomorphism.

The main result is:

Theorem 4. If G is locally compact, Abelian, then G has the duality property.
(This is no more than Pontryagin’s duality).
If G is compact, G has the duality property. (This is Tannaka-Krein theory).

In the last section of the paper, for the purpose of pattern recognition, we will use
crucially the fact that another class of groups, namely the Moore groups,
have also the duality property.
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3.2. Generalized Fourier Descriptors over compact groups. Our result in
this section is based upon Tannaka theory, and shows that the weak-completeness
(-i.e. completeness over a residual subset of L?(G,dg)-) of the Generalized-Fourier-
Descriptors (which holds on the circle group, and which is crucial for pattern recog-
nition of "exterior contours") generalizes to compact separable groups.

If G is compact separable, then, we have the following crucial but obvious lemma:

Lemma 1. The subset R of functions f € L*(G,dg) such that f(§) is invertible
for all x = § € G is residual in L? (G,dg).

Proof. Tt follows from [6] that if G is compact separable, then G is countable. For
a fixed g, the set of f such that f(g) is not invertible is clearly open, dense. Hence,
R is a countable intersection of open-dense sets, in a Hilbert space. [l

Now, let us take two functions f,h € R, such that the associated Generalized-
Fourier-Descriptors are equal. The equality of the first-type Fourier-Descriptors
gives f(§) o f(§)* = h(§) o h(§)*, for all § € G Since f(§) is invertible, we deduce
that there is u(§) € U(Hj), such that f(g) = h(j) u().

If x is a reducible unitary representation, it is a finite direct sum of irreducible
representations, and therefore, the equahty f (x)o of ()* = ﬁ(x) o fz(x)*, for all g; €
G also defines an invertible u(x) = h(x)™* f(x). (By the finite sum decomposition,
h(x) = ®h(g;)), hence h(x) is invertible.

Moreover, in this compact case, it is obvious that the mappings rep,(G) —
M(n,C), x — f(x) are continuous and the mapping x — u(x) = h(x)™* f(x) is
also continuous.

Also, the equality of the (second) Fourier-Descriptors for the irreducible repre-
sentations, due to the finite decomposition of any representation in a direct sum
of irreducible ones, plus the usual properties of Hilbert tensor product shows that
the equality of Fourier-Descriptors holds also for arbitrary (non-irreducible) unitary
finite-dimensional representations, i.e., if , X’ are unitary representations, non nec-
essarily irreducible, we have also:

(3.1) FOOBF() 0 FOx@X')™ = h()@h(X') o h(x@x')".
Replacing in this last equality F(x) = h(x) u(x), and taking into account the
fact that all the f(x), h(x) are invertible, we get that:

(3:2) u(x®x') = u(x)®u(x’),
for all finite dimensional unitary representations , x’ of G.

Now for such X, X', and for A intertwining x and ¥, we have also Af(x) =
fG YDdg = [, f(9)X (g7 ")Adg = F(X)A. Tt follows that Ah(x)u(x) =

h(x' ) ( )A hence, h(x )Au( ) = h(x")u(x')A, in which h(y’) is invertible. There-
fore, Au(x) = u(x )A By Definition 4, u is a quasi-representation of the category
7(G). By Theorem 4, G has the duality property, and for all § € G*, u(§) = x;(90)

for some gg € G. Then: R X
F(9) = h(9)x4(90),

and, by the main property 2.11 of Fourier transforms, f = E, f = hg for some
a €.
Therefore, we have proven the following main theorem.
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Theorem 5. Let G be a compact separable group. Let R be the subset of elements of
L?(G,dg) on which the Fourier transform takes value in invertible operators. Then
R is residual in L° (G,dg), and the Generalized Fourier Descriptors discriminate
over R.

4. THE CASE OF THE GROUP OF MOTIONS WITH SMALL ROTATIONS Mj

This section contains our final results. Some of them are rather strange: We
already know (Remark 5) that Generalized Fourier descriptors do not discriminate
over any residual subset of L?(R?), with respect to the action of the group of
motions Ms. Here, we will consider the action on the plane of the group My n of
translations and small rotations. In the case where NV is an odd number, we will be
able to make a complete theory, and to get a weak-completion result.

4.1. Moore groups and duality for Moore groups. For details, we refer to
[14]. We already know that compact groups have all their unitary irreducible rep-
resentations of finite dimension. But they are not the only ones.

Definition 6. A Moore group is a locally-compact group, such that all its unitary
irreducible representations have finite-dimensional underlaying Hilbert space.

Theorem 6. The groups Ma n are Moore groups.

Proof. These groups are semidirect products of the type Gy x R?, where G is a
(Abelian) finite group. Then we can use Mackey’s Imprimitivity Theorem to com-
pute their dual (see [23] for instance). By this theorem, their unitary irreducible
representations are parametrized by the (contragredient) action of the action of G
on R?, and their underlaying Hilbert spaces are the spaces of square summable func-
tions on these orbits, with respect to the corresponding quasi-invariant measures.
These orbits are finite. Hence, their IL?-space is isomorphic to C". (]

Theorem 7. (Chu duality) Moore groups (separable) have the duality property.

Then, we will try to copy what has been done for compact groups to our Moore
groups. There are several difficulties, due to the fact that the functions under con-
sideration (the images) are very special functions over the group. In fact, they are
functions over the homogeneous space R? of My .

4.2. Representations, Fourier transform and Generalized Fourier descrip-
tors over M; . In fact, considering only "images", we will be interested only with
functions on M y, that are also functions on the plane R%. One of the main prob-
lems, as we shall see, is that there are several possible "lifts" of the functions of
L*(R?) on L?(Ms ), and that the "trivial" lift is bad (in the sense that it does
not lead to a set of complete invariants under the action of motions).

Typical elements of M y are still denoted by g = (0, z,y) = (0, X), X = (z,y) €
R2, but now, 6 € N = {0, ..., N — 1}. Each such 6 represents a rotation of angle
297”7 that we still denote by Ry.

The Haar measure is the tensor product of the uniform measure over N and
the Lebesgue measure over R?. The dual space G is the union of the discrete set Z
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(characters) with the "Slice of Cake" S, corresponding to nonzero values of r € R? of
angle a(r), 0 < a(r) < ZW” The support of the Plancherel Measure is S (characters
are of no interest).

The representations and the Fourier transform have similar expressions to the
case of Ms. The only difference is that the orbits of the contragredient action of
the rotations on the plane, that are circles in the M5 case become the finite set N
in the My, y case. Therefore, L2(C,df) is changed for I?(N) ~ CN.

Here ¢ € CV, ie. ¢ N — C. We have exactly the same formula as for M, :
(4.1) [ (8, X)) (u) = <" X= o (u 4 6),

but r € S and the map I2(N) — 2(N), o(u) — @(u + 6), is just the f—shift
operator over CN.

The Fourier transform has a similar expression to formula 2.9:

(4.2) [f(?")(p](u) = ( (0, x, y)e_i<T’R"*9X>
>/

xp(u — 0)dxdy)

Similar computations to those of Section 2.3 lead to the final formula for the
Fourier descriptors relative to the trivial lift of functions f over R? into functions
over Ms n (not depending on ) :

(4.3) L) =Y [f(Rer)Pdb, v € R,

6eN

LY2(f) = Y F(Ro(&4 + &) F(Ro&y) f(Ro€,)db,

0eN
for £,,&, € R

By our Theorem 3, these Generalized Fourier Descriptors are still invari-
ant under the action of M,y on L?(R?).

Another point is very important: the remark 5 of Section 2.3 still holds, but
only if N is an even number. This fact will be very important in the following.
The reason is that, if N is odd, the change f(z,y) — f(—z,y) does not map
functions on a given orbit to a function on the same orbit (of the contragredient
action of N over R?).

To finish this section, let us explain the main problem that appears when we try

to generalize the theorem 5 of Section 3.2.

For this, we have to consider the special expression of the Fourier transform of
the "trivial lift" of a function on the plane. We have a similar expression as in
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Section 2.3, ( formula 2.16):
(44) [f ()] (u)

Z f(Rg_u’l")(,D(u - 0)

= < @(0), F(R_r) () -

The crucial point in the proof of the main theorem 5 is that the operators f (r)
are all invertible. But, here, it is not at all the case: the operators defined by the
formula above are far from invertible: they always have rank 1, as is seen on
the formula.

To overcome this difficulty, we have to chose another lift of functions on the
plane to functions on M n. This is what we do in the next section.

4.3. The cyclic-lift from L2(R?) to L.2(Mz ). From now on, we consider func-

tions on R?, that are square-summable, and that have their support contained in a
translated of a given compact set K (the "screen").

Given a compactly supported function in L?(R? ,R), we can define its average
and its centroid, as follows:

w(f) = [ sy
centr(f) = (xy,yp) =Xy =
( / z f(x,y)dzdy, / yf (@, y)dzdy).
K K
Definition 7. The cyclic-lift of a compactly supported f € L*(R?, R), with nonzero

average, onto IL° (M y ) is the function f¢(0,z,y) = f(ReX + "’:vt(rf({)).

The set of K-supported functions, with zero centroid is a closed subspace of
L?(K). Hence it is a Hilbert-subspace, denoted by H. The set Z of elements of
‘H with nonzero average is an open subset of H, therefore it has the structure of a
Hilbert manifold. This is important since we shall apply to this space the parametric
transversality theorem of [1].

Definition 8. from now on, a (grey level, or one-color) "image" f is a function
such that f€ is well defined and f¢(0,X) belongs to T.

Notice that moreover, usual images have positive value. (grey or color levels vary
between zero and 1). This will be of no importance here in.

By the lemma 12 in appendix 3.4.7, we know that f and g differ from a motion
angle =%/ 4k if and only if f¢ and ¢¢ differ from a motion with angle equal to 2’”.

In thls way, we reduce the problem, of equivalence with rotation of certain mul—
tiples of a small angle to the problem of equivalence of the cyclic lifts over
My n.

This is the problem that we will treat now, with the same method as the one
of Section 3 (case of compact groups). For crucial reasons that will appear clearly
below, we will consider only the case of an odd N = 2n + 1. We have already a
good reason for this from section 4.2: the remark 5 of Section 2.3 still holds and
also now, if N is odd, when k varies in N, 2kmod N also varies in N.
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4.4. Fourier-transform, Generalized-Fourier-Descriptors of cyclic-lifts over
M5 2y,41. Using the expression 4.1 of the unitary irreducible representations over
M> n, easy computations give the following results:

For ry,ry € S,

(4.5) oo (0, V)l (ul,u2) = e/ <Homaritlioura V>
><<p(u1 + 9, U + 9)

Notice that this expression is exactly the same as 2.14. As a consequence, again:

(4.6) Xy (0: X) @) (ur,up) = 7 SHommamt oz ra >

xp(uy — 0,uz — 0).

For the Fourier transform of a cyclic lift f¢, we get:
(4.7) [fe(r)¥](u) =
- Z -fN(R2a+u7’)ei<R2a+ur7‘“+(f>Xf>\IJ(_OC)7

— Z F(Ru_sar)e <Tue—2ammm X >y ()
aGN

Here, as above, f(V) denotes the usual 2-D Fourier transform of f at V. We get
also:

(48) Fo)y @) = 3 F(Ra_sur)e " <Fonrmn X1y (a),
OLEN
The last expression we need is:

o~

(4.9) [fe(ri®ra)@](ur, ug) =

E f(RQ()z—'ll,er + RQa—ul TQ)
aEN
i<R2a—u2T1+R2a7u17‘25#(f)Xf>

e o(u] — a,ug — ).

Formula 4.8 leads to:

(4.10) [Fe(r) @ fe(r2)* o plur, us) =

Z f(Ron—QuQTl).f(Ral—ZulTQ)
(al,ag)ENXN

; 1
—i<Ray—2uy "1+ Ray —2uy T2, gy X > o (P(Oélya2)~

Now, we can perform the computation of the Generalized Fourier Descriptors.
After computations based upon the formulas just established, we get for the self
adjoint matrix I7(f) = f(r) o f(r)* :

L)k = Z f(szij)?(kaij)eK(Rl_Rk)sz"r’#(”Xb,
jEN

e
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and for the phase invariants I3 (f) :
2" () W] (u, u2) =

Z Z f(sz—uQH + R2j—u1TQ)?(ng—Qzl,Q—i—erl)

jEN (wl,wQ)EN

F (R, —2u, 42472) X
ei<(1_Rw2_"2)R2j—u2 T1+(I—Rw1—'ll,1)R2j_u1 T‘Q,#(f)xf> %

\Il(uhug).

Since N is odd, setting m = 2j, we get'

(411) l k= Z f Rl m'r Rk m"ﬂ)ei<(Rl7Rk)R7mn#(f>Xf>7
mEN
and also, we see easily that I3"""*(f) is completely determined by the quantities:

I3 () (u, ug, wi,we) =

(412) Z f(Rm:—7L2T1 + R'm,—ul TZ)f(RwQ—Qu,g—i-mrl) X

mEN

f(Rwl—Zul—i-m,TZ) X
ei<(17Rw27u2)R7n7u27‘1+(17Rw17u1)R7n7u1 T2,M+U)Xf>

Setting us = —lo,wo — 2us = k2, uy = —l1, w1 — 2uy = k1, we get:

151,7”2 (f)(l17 127 k17 kz) =

(4.13) 3" F(Rutiar1 + Rty 72) F(Riymr)
m,EN
?(Rk1+m7’2) e <(Riy=Rig) Renr1+(Riy —Riey ) Ren2s oy X >

Remark 7. Consider the particular case la = ko,l1 = k1, and set &, = Ry,m1,
&y = Ry, 2, then, we get:

—_~—

(4.14) () n02) = Y F(Rm(€ + &) F(Rny) F(Rins)-

meN

Note that this is just the discrete version of the (continuous) invariants of
type 2, in Formula 2.22. Note also that, making the change of variables £; = Ry,71,
52 Rkl T2, 53 = Rlzrl + R[1T27 we get:

o5 (f) = F(Rubs) f(Rmér) F(Ri€s)
meN

< B (63=6:1=E2) A X >
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which is the final (discrete form of our invariants).
Therefore, at the end, we have 3 sets of Generalized-Fourier-Descriptors (type-1,

type-2, type-3):

—_~

HO A RS
Lk = Z F(Ri—mr) f(Rp— )

mEN
ei<(R17Rk)R77n7‘;#(f)Xf>7

—_~—

LY2(f) = > f(Rm(& + )

mEN

F(Rn&)) f(Rin&s),
575 (f) = N F(Rubs) F(Riné)) F(Rinks)

mEN

ei<Rm(f3_§1_§2)am+(f)Xf>.

As we shall see, there are several good reasons, contrarily to the case of the
descriptors 2.22 over My (we know that they are not weakly complete, already),
that these one are weakly complete (i.e. they discriminate on a residual subset of

4k

2k’ )
2n+1? .

2n+1

i.e.

the set of images under the action of motions of angle

4.5. Completeness of the Discrete Generalized Fourier Descriptors . This
is a rather hard work. We try to follow the scheme of the proof of Theorem 5, and
at some point, there is a crucial obstruction.

Here, as above, a compact K C R? is fixed, containing a neighborhood of the
origin (K is the "screen"), and an image is an element of Z, from Definition 8.

Let us consider the subset G C Z of "generic images", defined as follows. For
f € I, as above, f¢ denotes the regular 2-D Fourier transform of f¢(0,X) as an
element of L?(R?). Denote as above X = (z,y) € R? (but here X should be
understood as a point of the frequency plane). The function f“(X ) is a complex-
valued function of X, analytic in X. (Paley-Wiener). For r € R?, denote by w, € CN
the vector w,. = (fE(RoT, ..oy FE(Ro,T)y ey FE((Roy 1))

Denote also by €2,. the circulant matrix associated to w,.. If Fiy denotes the usual
DFT matrix of order N (i.e. the N x N unitary matrix representing the Fourier
Transform over the Abelian group Z/NZ), then the vector of eigenvalues 4, of Q,
meets 6, = Fyw,.

Definition 9. The generic set G is the subset of T of elements such that €, is
an invertible matriz for all 1 € R?, except for a (may be countable) set of isolated
values of T, for which Q.. has a zero eigenvalue with simple multiplicity.

The next Lemma shows that if N is an odd integer number, then G is very big.

Lemma 2. Assume that N is odd. Then, G is residual.
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Proof. We consider the following mappings g, : ZxR2 — R2, k € N, o,(/, r) is
the (real and imaginary part of the) k' eigenvalue of ), (it makes sense to talk
about the k' eigenvalue since all circulant matrices are simultaneously diagonalized
by the DFT Fy). Lemma 35 from the appendix shows that, applying Abraham’s
parametric transversality Theorem ([1]) to g, we find a residual subset Gx C Z, such
that g, (f) is transversal to zero, for all f € Gy. Here, g, (f)(x) means g, (f, ). Set
G = Ngen G- Clearly, G is residual, and for f € G (for dimension 2 and codimension
2 reasons) (2, can have a zero eigenvalue at isolated points of R? only. A similar
argument shows that at these special points the zero eigenvalue is simple. (|

Remark 8. Notice that here, once more, the fact that N is odd is crucial.

Now let us take f,g € G, and assume that their discrete Generalized Fourier
descriptors from Section 4.4 are equal.

We can apply the reasoning of Section 3.2, to construct a quasi-representation of
the category m(Ms, n) at points where Q,.(f) and Q,(g) are invertible only. Again
here, we leave the reader to check that character representations play little role,
and we care mostly about the other representations.

Recall the formula 4.7 for our Fourier Transform in the case of Ma n:

[Fe(r)¥](u) =

= Z f(Ru72ar)ei<Ru*2a7'am+(f)Xf>\Ij(a)
aEN

= Z JB(RufMT)\IJ(O‘)v

aEN

o gt — f(a Xy e .
with f'(z) = f( +a’u(f)) f9(0,2),

by the basic property of the usual 2D Fourier transform with respect to translations.
Since N is odd (a crucial point again), it is also equal to:

[fer)T(w) = > F(Ruar)(CT)(a).
aEN
where C' is a certain universal unitary operator.
This formula can also be read, in a matrix setting, as:
(4.15) fer) = . (f)C.

for a certain universal permutation matrix C.

Also, it is easy to see that, by the equality of the invariants, that the points
where Q,.(f) and Q,(g) are non-invertible are the same.

Out of these isolated points, we can apply the same reasoning as in the compact
case, Section 3.2. Hence, the equality of the first invariants give:

fc(r)fc(r)* = Qr(f)Qr(f)*:
(Mg (r)” = Q(9)(g9)"
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Since at nonsingular points 2,.(f) and Q,(g) are invertible, this implies that there
is a unitary matrix U(r) such that §¢(r) = f¢(r)U(r).

Let I = {r;|$?,, is singular}. Out of I, U(r) is an analytic function of r, since
U(r) = [fe(r)]1g°(r).

Now, we will need some results about unitary representations, namely:

R1. Two finite dimensional unitary representations that are equivalent are uni-
tarily equivalent,

and the more difficult one, that we state in our case only, and which is a con-
sequence of the "Induction-reduction" Theorem of Barut [2]. (However, once one
knows the result, he can easily check it by direct computations in the special case):

R2. For r1,r9 € R?, the representation Xry&r, 1S €quivalent (hence unitarily
equivalent by R1) to the direct Hilbert sum of representations &, Xy, + Rers-

This means that , if we take 71,79 out of I, but 71 + Ry,re € I, and 11+ Ryre ¢ I
for k # ko (which is clearly possible), then, if A denotes the unitary equivalence
between X, ¢, and @, cx X, 4 gory» Setting &, = r1 + Ryra, we can write that the
block diagonal matrix A = diag(f¢(&y), ..., f(Ex_;)) satisfies:

(4.16) Af = AgAU(ry) &U (ry) AL

Indeed, this comes from the equality of the second-type descriptors:

(4.17) GBI (Xr) © FC (X @Xry) T =

900 PG (Xry) © 9 (X, @X )™

and since §°(x,,)©9°((x,,) = f°(x,)®F(Xy,) 0 U(r1)@U(rs) and both are in-
vertible operators, then, replacing in 4.17, we get:

PO @) 0 £ 00 @ (X)) =
gc(Xrl ®Xr2) © U(Tl)*®U(T2)* ° fc(Xrl)*®fc(Xr2)*a
which implies,
FoO X)) = 6° (X, ©Xy,) 0 U (r1)* QU (r2)".
Using the equivalence A, we get:

Afe(x,, ®x,,) A7 =

A (X, OXpy) AT A0 U (1) @U (r2)* A1

This last equality is exactly 4.16.

Remark 9. The following fact is important: the matriz A is a constant. This comes
again from the "Induction-Reduction" Theorem of [2] (or from direct computation):
the equivalence A : L? (N )®L?(N )= L%(N x N )— Dpe L’ (N), is given by Ap =
@keN‘Pm with ¢, (1) = (I — k,1). Hence, its matriz is independent of ri,rs.
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Let us rewrite 4.16 as Ay = A, H, for some unitary matrix H. Since N —1 corre-
sponding blocks in Ay and A, are invertible, it follows that H is also block diagonal.
Since it is unitary, all diagonal blocks are unitary. In particular, the k%" block is
unitary. Also, H = AoU(r1)*®U (r2)*A~! is an analytic function of r1,re. Moving
r1,72 in a neighborhood moves 1 + Ry,72 in a neighborhood. If we read the kf)h
line of the equality Ay = AgH, we get Ar(Xy, 1 ry ) = DIXr 4 Ry ) Hio (T1,72),
where Hy,(r1,r2) is unitary, and analytic in r1,75. It follows that, by analyticity
outside I, that U(r) prolongs analytically to all of R?, in a unique way. The equality
§¢(r) = fe(r)U(r) holds over R2.

Now, for the characters K,,, n € Z, it is easily computed that f“(Kn) = av (f)
S €™ F/N n particular £¢(0) = Nav (f).

The equality of the second type invariants imply that av (f) = av (g) ; and hence,
the equality of the Generalized Fourier descriptors relative to characters is implied
by the equality of the others.

Moreover, if f¢(K,) # 0, §°(K,) = f¢(K,), this suggests the choice U(K,) = 1
for all n € Z.

Now, let us define U(x) for any p-dimensional representation x (p arbitrary).

P k .

As a unitary representation y is unitarily equivalent to @ Xr EB Kn = ®x;,
r; €8, .

ie x = AAyx;A*, where A is some unitary matrix, and Ay; is a block diagonal
of irreducible representations x;.

We define U(x) = AAU x; A*.
Lemma 3. U is well defined.

Proof. Let A and B be such that:

x = AAx;A* = BAy,B*.

Then, B*AAy,; = Ax;B*A.

Consider a primary-labelling of Ay, :

Ay, = X1®Idk1 P....... &) Xp®‘[dkp7 where x; # x; for all i # j.

With an argument similar to the one at the end of the proof of Lemma 14 (from
Formula 5.6 on), we get that:

B*A = (Idy, @A) @ ........ @ (Idy, @A),

where Aq, .......... ,A, are certain unitary matrices.
Then we have to show that
B*AAU (x;) = AU (x;) B*A, or equivalently :

(4.18) B*AAU (x;) AB* = AU (x;)

This is true soon as:
(4.19) U (xj) ©Idy, = (Idy,&A;) (U (xj) ®Idk,) (Idk, ®A;)",
for all j.

But

(Zdr,®A;) (U x; ) &1dy,) (Idy, ®A)
(Idy, @A) (U (xj ®Idk) (Idy,®A%) =
(U (x;) ©A;) (Tdk, @A5) =
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U (x;) @047 = U (x;) ®1dy,,
Since A; is unitary. This ends the proof. O

Lemma 4. At a point

X = (Ax,, Do, EéXr,,@Kkl@ ....... @Kkl)A*

= A(x, ® Xfp)A*, where Ty ....... rp ¢ 1

U(X) = (4 ()13 (x,) @ 1d) A*
Proof. By definition of I at such points 7q,....... Tps f¢(x,.) and g¢ (x,.) are invertible.
Also, by equality of the first descriptors, fc (er) fc* (XTJ) = g°¢ er) G (XTJ) ,
we have §° (er) = fe (er) U (er) . Also, by definition, U(Kj) = Id. This shows
the result. O
Lemma 5. U(x®x) =U (x) @ U(x).
Lemma 6. If Ax = ' A, A unitary, then: AU (x) = U(x )A.

The Lemmas 5, 6 are just trivial consequences of the definition of U (x) .

Lemma 7. U is continuous.

This is the most complicated point. We shall need crucially the Lemma (14) at
the end of the appendix.

Proof. Assume that x? € Rep, (G) P — X

set X = B(x1®Lk, ® ....... ® x,®1k,)B* = BxB*

with x; # x; for @ # j.

Then, we apply to B*x?B the result of Lemma (14). B*x?B tends to Y, iff
B*xP B meets the statements 1,2,3 of Lemma (14).

Using the notations of Lemma (14), it follows that B*x? B= Ap(Géi,ngg’j @
IA(nfj)A;;, with properties 1.2.3.

By definition of U,

UB'W'B) = A@i,Uxg,)® UK )A;

¥ p

)
5]

= Ay(Dij U(ngﬂj) © 1d) A,
and, for any convergent subsequence A,

Ay — A= (I, ®A\ D ... @ I, ®A,) and using Lemma 6,

U (B*X"B) — A((U (Xy,) ©I1, )® woovere © (U (xyp) S, ))A*
B U(X*)B — &; (I;®A,) (U (er) ®ij) (I; @A) & Id.
Then, B*U(P)B — @; (U (x,,) @A, ) (1;&A5) & 14,
— @,(U (X, ) @85A5) & 14,
— B, (U (er) ®Idkj) @ Id.
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Therefore,

U — B@,; (U(x,)@ldy) +14)B

Hence by Lemma 6,

Exhausting all convergent subsequences A7 — A (not the same, may be) it
remains only a finite number of terms and, for each corresponding subsequence
U(x") — UKX).

Therefore the whole sequence U (x?) meets:

U (x?) — U(x') and U is sequentially continuous hence continuous. O

~ ’

Lemma 8. U(X®X,) =U(x)®U(x )

Proof. x = A(X1 D e, o X )A* = AAYA*.
X =B D ... ©x,)B* = BAY' B*.

XEX = A1 @ oo ® X)) A*OB(X) © oo @ X;,) B*
= (A®B) (x1 @ wvooon. B X)RA (X B .. @ x,)B*

= (A®B) (X1 ® ccooee B X)B(X) © oo B X)) (A*@B*)
= (A@B) (X1 @ oo B X)O(X) @ vvvee. B X,,) (ABRB)”
= (A®B) (i x:®x;) (A®B)".

U(x&x') = (A&B) @ U(x;®x;) (A®B)" (by Lemmas 5, 6).
Assume that:

(4.20) Ua®x;) = U (x,) ®U(x;)-

Then, U(x®X') = (A®B) @;; U(x,)&U(x;) (A®B)*
= (A®B) U (Ax) ®U(Ax ) (A®B)"
= (AU (Ax) ©BU(AX ) (4@ B)
=AU (Ax) A*®BU(AX )B*
= U (x) ®U(X), by Lemma 6.
It remains to prove 4.20.
If x; and x; are both characters, then 4.20 can be rewritten as 101 = 1.
If x; is not character and x; is, 4.20 can be rewritten as:

(4.21) Ux,©K,) =U (x,) ®U(K,).

It is easy to check that : e “Id o x,¢ (u) = (x,&K,) 0 e “Idyp (u) .
Therefore by Lemma 6,

ein uU (Xr) = U(Xr®f(n)eln uv
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or U (X’I“)A: U(Xr®f(n)

Since U(Kn)A =1, R

The last case is to show: U (x,, ®x,,) = U (x,,) ®U (Xr2) .

Actually, this is true if ri,ro and r; + Rgre ¢ IAfor all k£ € ]\\Jf : By the
equality of the second Descriptors, ¢° (Xr1®xr2) = fc (Xn ®Xr2) U(XT1®XT2)7
g (Xﬁl) 29 (xrs) = 17 (%) @F° (X02) U (x0,) OU (X)) -

en,
9 (X ®Xry) 8° (X)) BF° (o,

) =
£ 0 X)) U (X0, 0X2,) U (X)) €U (x1,)”
of (xr,)" &F (xry)”
= (0 ®X) £ () O (X))
But, since 71,79, 11+ Rira ¢ I, f€ (X, ®X,, ) is invertible (remind that x,., ®x,., ~

®kX(T1+RkT2))'

Therefore, U* (Xr1®Xr2) U (Xrl) QU (Xr2) = 1d,

U (Xﬁ ®X7“2) =U (Xh) ®U (XT2) '

But, the set of (r1,72) € R? x R? such that this holds is open, dense.

Otherwise, the mapping (x,x ) — x®x is clearly continuous, and U is contin-
uous by the Lemma 7. Also, the mapping (r, a, X) — x,.(a, X) is continuous (it is
analytic in (r, a, X')). Hence, on any compact K C Ma y, the mapping r — X, is
continuous. Therefore, in the diagram,

(r1,72) - X ®Xp, — U(Xr, ©Xr,)
; (¢ 1)
S U~ Xr1®Xr o
Uon)8U0) = U (1) 20 )
all arrows are continuous maps.
It follows that U (Xn®xr2) =U (Xrl) QU (Xm)v since it is true on a dense
subset of R? x R2. O

Lemmas 3, 4, 5, 6, 7, show that U is a quasi-representation of the category
T (MaN) .

Since Ms n has the duality property, U (x) = x (go) for some gy € My n.

Also, we have: R R

gc (Xr) = fc (Xr) U (Xr) = fc (Xr) X (g()) = ;]:0 (Xr) )

by the fundamental property of the Fourier transform.

The support of the Plancherel’s measure being given by the (non-character )
unitary irreducible representations x,., by the inverse Fourier transform, we get
g° = fy,, for some go € Mz y , which is what we needed to prove. By lemma 12 we
have shown our final result.

Theorem 8. If the (Three types of ) Discrete Generalized Fourier Descriptors of
two images f,g € G are the same, and if N is odd, then the two images differ from

a translation, the rotation of which has angle ‘”“T’T (i.e. %Tﬂ since N is odd) for

some k. Remind that G is a residual subset of the set of images of size K.
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4.6. Discussion of the Theoretical results, and theoretical perspectives.
1. We have to mention the final form of duality Theory, which is given by "Tat-
suuma Duality", see [14], [19]. This is a generalization of Chu duality, to general
locally compact type 1 groups. In particular, it works for Ms. Unfortunately, huge
difficulties appear when using it in our context. However, it is already clear for us
that, using this duality result, one could try to get a third type of invariants for
Ms. This is a challenging, but hard subject.

2. The first and second-type Descriptors, that arise via the trivial or the cyclic
lift have a very interesting practical feature: they don’t depend on an estimation
of the centroid of the image. This is a strong point in practice.

3. Otherwise, the variables that appear in the Generalized-Fourier-descriptors
have clear frequency interpretation. Hence, depending on the problem (a high or
low frequency texture), one can chose the values of these frequency variables in
certain adequate ranges.

5. APPENDIX

We start with the statement of 3 very elementary lemmas, the proof of which is
easy and left to the reader.

Lemma 9. Let {an}, {bn},n € Z, be two sequences in R/2rZ with a_, = —ay,
b_, = —b,, and for all m,n,

(51) Ap + Ay — A = bm + bn - bn+m7
then:
(52) ayg = b() = 0,

an  Qm b, bm

——— = — —— forallm,n>1.
n m n m

Conversely, 5.2 implies an + apm — mtn = b + b — bppm.

Lemma 10. Let f,g be real I’ functions on the circle. Let {fn},{gn} be their
respective Fourier series.

Assume that: a) |fn] = |gn] # 0,Y0 € Z, b) fofmfosm = GnGmnim Yn,m >
1. Then g is a translate of f.

Lemma 11. The set of real L? functions f on the circle, such that f, # 0 for all
n € Z (where f,, is the Fourier series of f) is residual in L°.

The fourth lemma below justifies the use of the "cyclic lift" of a function f over
the plane to a function f¢ over one of our motion groups M or Ma n.

Lemma 12. Two functions f,g € L?(R?) with nonzero average differ from a mo-
tion (6, a,b) = (0, A) iff their cyclic lifts differs from a motion, the rotation compo-

nent of which has angle g7 and the translation is zero.



INVARIANTS OF GROUP ACTIONS 29

Proof. Set g(X) = f(R,X + A) for (w,A) € G= M, or My y.
let}r)l, av(g) = [pe fF(RoX + A)dX = [o, f(RoX + A)d(R.X) = [p f(Y)d(Y)
= av(f).
Also, centr(g) = Xy = [po Xf(RoX+A)dX = R_,, [ RoX f(R,X+A)d(R,X) =
R_y [ (RoX+A) f(R, X+ A)d(R,X +A)) —R_,A [, f(RoX+A)d(R,X +A))
=R_,X;— R_,Aav(f). Hence we get two first conclusions:
(5.3) For g(X) = [f(R,X +A4),
Lav(g) = av(f),
2. Xy =R_,(Xy — Aav(f)).
Now, consider the cyclic lifts f¢, g¢ of f and g :
1
F0.X) = f(RX o+ oK)

1
g(RaX + WXQ)

— F(Ru(R.X + %(f)fz_w (X; — Aav(f))) + A)

= f(RotaX +A+ %(f)(Xf — Aav(f)))

1
= f(Rw+aX + WXJC)

Otherwise (A, B)f*(e, X) = f(Rara(RAX+B) 45577 Xs) = f(Ras2n X+RasaB+
—m)l( 7 Xy). Therefore, choosing A = ¢ and B = 0 we get:

g“(a, X)

2
()‘a B)fc(avX) = f(ROt-I-wX + #(f)Xf) = gc(avX)'
Conversely, we assume that (X, 0)f°(a, X) = ¢g°(a, X). This means that (o +
A, Ry X) = ¢°(a, X) which is equivalent to:

1 1
f(RaaBaX + ——=X) = g(Ra X + ——=X).

av(f) av(g)
This is true for all o, X. Let us take the particular case where o = —2\. It gives:
1 1
X+ —=Xs)=g(R_opx X + ——X,).
P gy X0 = X g )

This is true for all X. Let usset Y = X + #(J‘)Xf' Then X =Y — #(J‘)Xf’ and
for all Y, we have:

1 1
Y)=g(R_2\Y + —X, — ——=R_a\X7¢).
f( ) g( Al + av(g) g av(f) 2X f)
fY) =g(R_\Y + H),
for a certain H. This shows that f and ¢ differ from a motion, with rotation angle
2). O

The following lemma is a more or less obvious technical result we need in Section
4.5. A compact K C R? is fixed, containing a neighborhood of the origin. The set
H C L?(K,R) is formed by the functions f that have there centroid X; = 0. H is
a closed subspace in a Hilbert space, hence it is a Hilbert subspace. The set Z of
images (of size K) is the open subset of H formed by the functions f with nonzero
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average. Let N € N and r € R? be fixed, r # 0 Consider the map M : T —CN,

f = wr = (f(Ror, ..., f(Ro,7), ..oy f((Ron_,7)), where f is the usual 2D Fourier
transform of f as an element of L?(R?,R).

Lemma 13. M is a linear submersion if and only if N is odd.

The proof is easy and left to the reader. A very simple idea for the proof is
to show that, for suitably chosen X,, € K, the distributions that are linear real

combinations f = Zamé x,,, Where dx, is the Dirac function at X,,, the Z(f)
m
span the realification of CV. Although, if N is even, this is clearly not true.

Now, we state and prove a lemma characterizing the convergence of sequences on
rep, (Ma,n ). This Lemma is crucial to prove the continuity of the quasi-representation
of m(Ms,n ) that we construct in section 4.5.

Let x? be a sequence of finite dimensional representations of Ms,x of the same
dimension n. Assume that:

(5.4) X =X1 ® I, D .. ®Xp®lkp,
where x; is either a character x; = IA(n]. (a, X) = €%, or an irreducible repre-
sentation of the form x, ,r; € S, and{ ri7T for i # j.
! n; # n;
Let S. denote the "modified slice of cake", i.e. S. = {(Acosa, Asina), A > 0,
—<<a< QW” — ¢}. Chose € small enough for r; € S. for all j.

Lemma 14. x? — x if and only if there exists Ay, a unitary matriz, and Qf,j s
nt . such that:

i,

]1’ { Qf}l(p_> T 6/\863

i — I,

2 X =A(@igxg, Oy KB, A

3. For all convergent subsequence AP — A,

A=1I, QA4 D oo, e I, ®Ap, for certain unitary matrices Ay, ..., Ap.
Proof. : xP is completely reducible. Then:

X' = ApAx, Ay,

where Ax? is a block-diagonal of irreducible representations (either y,» or IA(n;).
J

First, when p — 400, all the rf and n? remain bounded : Both would contradict

the equicontinuity on any compact K C My n of the sequence Xf o (XP restricted
to K). Second, consider any convergent subsequence (still denoted by A,) and the
corresponding subsequences (r?), (n?). Note that the vectors (r?) and (n?) may
have different dimensions depending on p.

In the following we shall consider extracted subsequences such that (r7), (K )
both converge. We shall show that all of them converge to the same required limit.
Hence (after some multiplication of A, by a constant matrix) the whole extracted
sequence A, will converge to a limit with the required form.

Since (K 7') converges, and since (K ) is bounded among characters, K 7 is con-

stant, after a certain rank, IA(f = R’;‘, and also, o} — o7.
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The corresponding diagonal matrix we denote by AX/. We have x, — x =
(Ap — A) Ax, A5 + AAx, (A;; —A*) + AAx, A" = x.

This shows that AAy,A* —x — 0 (since (A, — A) — 0 and since all other
terms remain bounded in restriction to any compact K C M, n). Now, Ay, —
Ax'. Hence AAx,A* —x = A (Axp — AY') A* + AAY'A* — x. Tt follows that
AAX/ A*—x=0 (Axp converges uniformly to AX/ on any compact K C M ).

(5.5) AAY = YA.

The representations Ax and Ay are equivalent. This shows that K ;=K

0; = r;, with adequate multiplicity. We can find a unitary transformation P of C"

such that PAyY P* = Ay.
Then we change A for AP*, A, for A,P* and Ay, for PAx, P*. We have now:

AAx = yA, and A= A ......... DA,
Let us consider a non-character-block of this decomposition, the first block A;
say.

The relation AAx = yA gives (considering the block decomposition of A; in
N x N dimensional blocks) A; = (A1) :

(5.6) A1i X, = Xy Arig-

By Shur’s Lemma, Ay, ; is a scalar multiple of the identity.

Ay = AijId. This can be rewritten as :

A = I, ®Ay, Ay (X, ©1k,) = (X0, &Ik, ) Ar.

It follows since A; is unitary that A; is also unitary. This ends the proof, since
the converse statement is easily checked. O
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